Page 64 - Read Online
P. 64
Mu et al. Energy Mater 2022;2:200043 https://dx.doi.org/10.20517/energymater.2022.57 Page 13 of 16
Prepared most figures: Liu ZM, Lai QS, Chen H
Wrote the paper: Mu JJ, Gao XW, Wang D, Yang DR
All authors participated in the writing and revision and commented on the manuscript.
Availability of data and materials
Not applicable.
Financial support and sponsorship
This work was supported by the National Natural Science Foundation of China (Grant No.52272194 and
52204308), LiaoNing Revitalization Talents Program (No. XLYC2007155), the Fundamental Research Funds
for the Central Universities (N2025018, N2025009), China Postdoctoral Science Foundation
(2022M710639).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2022.
REFERENCES
1. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 2018;8:1703137. DOI
2. Roose B, Tennyson EM, Meheretu G, et al. Local manufacturing of perovskite solar cells, a game-changer for low- and lower-middle
income countries? Energy Environ Sci 2022;15:3571-82. DOI
3. Sadeghi G. Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy
Storage Mater 2022;46:192-222. DOI
4. Feng X, Fang H, Wu N, et al. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and
potassium batteries. Joule 2022;6:543-87. DOI
5. Shi Q, Zheng B, Zheng Y, et al. Co-benefits of CO emission reduction from China’s clean air actions between 2013-2020. Nat
2
Commun 2022;13:5061. DOI PubMed PMC
6. Pan Z, Liu X, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv Energy Mater
2021;11:2100608. DOI
7. Wang B, Zhang Z, Yuan F, et al. An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion
batteries. Chem Eng J 2022;428:131093. DOI
8. Hu Y, Yu Q, Tang W, et al. Ultra-stable, ultra-long-lifespan and ultra-high-rate Na-ion batteries using small-molecule organic
cathodes. Energy Storage Mater 2021;41:738-47. DOI
9. Li Y, Du YF, Sun GH, et al. Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for
lithium-ion batteries. EcoMat 2021;3:e12091. DOI
10. Liang J, Deng W, Zhou X, et al. High Li-ion conductivity artificial interface enabled by Li-grafted graphene oxide for stable Li metal
pouch cell. ACS Appl Mater Interfaces 2021;13:29500-10. DOI PubMed
11. Hu J, Jiang Y, Li L, et al. A lithium feedstock pathway: coupled electrochemical extraction and direct battery materials manufacturing.
ACS Energy Lett 2022;7:2420-7. DOI
12. Li Y, Chen M, Liu B, et al. Heteroatom doping: an effective way to boost sodium ion storage. Adv Energy Mater 2020;10:2000927.
DOI
13. Wu J, Ihsan-Ul-Haq M, Ciucci F, Huang B, Kim J-K. Rationally designed nanostructured metal chalcogenides for advanced sodium-
ion batteries. Energy Storage Mater 2021;34:582-628. DOI
14. Ding J, Hu W, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev 2018;118:6457-98.
DOI PubMed