Page 75 - Read Online
P. 75

Huang et al. Complex Eng Syst 2023;3:2  I http://dx.doi.org/10.20517/ces.2022.43  Page 19 of 20


               work, we will add kinematic model constraints to improve GPS localization results.



               DECLARATIONS
               Authors’ contributions
               Writing-Original Draft and conceptualization: Huang Z
               Technical Support: Chen S
               Validation and supervision: Xi X, Li Y
               Investigation: Li Y, Wu S


               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               This work was supported by the Open fund of State Key Laboratory of Acoustics under Grant SKLA202215.


               Conflicts of interest
               All authors declared that there are no conflicts of interest

               Ethical approval and consent to participate
               Not applicable

               Consent for publication
               Not applicable

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.  Jeong J, Cho Y, Shin YS, Roh H, Kim A. Complex urban dataset with multi-level sensors from highly diverse urban environments. Int J
                  Robot Res 2019;38:642-57. DOI
               2.  Azimi SM, Fischer P, Körner M, Reinartz P. Aerial LaneNet: lane-marking semantic segmentation in aerial imagery using wavelet-
                  enhanced cost-sensitive symmetric fully convolutional neural networks. IEEE Trans Geosci Remote Sensing 2019;57:2920-38. DOI
               3.  Fischer P, Azimi SM, Roschlaub R, Krauß T. Towards HD maps from aerial imagery: robust lane marking segmentation using country-
                  scale imagery. IJGI 2018;7:458. DOI
               4.  Cheng W, Yang S, Zhou M, et al. Road Mapping and Localization Using Sparse Semantic Visual Features. IEEE Robot Autom Lett
                  2021;6:8118-25. DOI
               5.  Qin T, Zheng Y, Chen T, Chen Y, Su Q. RoadMap: A light-weight semantic map for visual localization towards autonomous driving.
                  arXiv:210602527 [cs] 2021 Jun. Available from: http://arxiv.org/abs/2106.02527. [Last accessed on 29 Jan 2023]
               6.  Hosseinyalamdary S, Peter M. LANE LEVEL LOCALIZATION; USING IMAGES AND HD MAPS TO MITIGATE THE LATERAL
                  ERROR. Int Arch Photogramm Remote Sens Spatial Inf Sci 2017;XLII-1/W1:129-34. DOI
               7.  Matthaei R, Bagschik G, Maurer M. Map-relative localization in lane-level maps for ADAS and autonomous driving. In: 2014 IEEE
                  Intelligent Vehicles Symposium Proceedings. MI, USA: IEEE; 2014. pp. 49–55. Available from: http://ieeexplore.ieee.org/document/6
                  856428/. [Last accessed on 29 Jan 2023]
               8.  Nedevschi S, Popescu V, Danescu R, Marita T, Oniga F. Accurate Ego-Vehicle Global Localization at Intersections Through Alignment
                  of Visual Data With Digital Map. IEEE Trans Intell Transport Syst 2013;14:673-87. DOI
               9.  Qu X, Soheilian B, Paparoditis N. Vehicle localization using mono-camera and geo-referenced traffic signs. In: 2015 IEEE Intelligent
                  Vehicles Symposium (IV); 2015. pp. 605–10. DOI
               10. Tao Z, Bonnifait P, Frémont V, Ibañez-Guzman J. Mapping and localization using GPS, lane markings and proprioceptive sensors. In:
                  2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013. pp. 406–12. DOI
               11. Welzel A, Reisdorf P, Wanielik G. Improving urban vehicle localization with traffic sign recognition. In: 2015 IEEE 18th International
                  Conference on Intelligent Transportation Systems; 2015. p. 5. DOI
               12. Xiao Z, Yang D, Wen T, Jiang K, Yan R. Monocular Localization with Vector HD Map (MLVHM): A Low-Cost Method for Commercial
                  IVs. Sensors (Basel) 2020;20:1870. DOI
   70   71   72   73   74   75   76   77   78   79   80