Page 76 - Read Online
P. 76

Page 20 of 20                  Huang et al. Complex Eng Syst 2023;3:2  I http://dx.doi.org/10.20517/ces.2022.43



               13. Jo K, Lee M, Kim C, Sunwoo M. Construction process of a three-dimensional roadway geometry map for autonomous driving. Proceedings
                  of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2017;231:1414-34. DOI
               14. Chen A, Ramanandan A, Farrell JA. High-precision lane-Level road map building for vehicle navigation. In: IEEE/ION Position, Location
                  and Navigation Symposium; 2010. pp. 1035–42. DOI
               15. Jo K, Sunwoo M. Generation of a precise roadway map for autonomous cars. IEEE Trans Intell Transport Syst 2014;15:925-37. DOI
               16. Zhang T, Arrigoni S, Garozzo M, Yang Dg, Cheli F. A lane-level road network model with global continuity. Transportation Research
                  Part C: Emerging Technologies 2016;71:32-50. DOI
               17. Gwon GP, Hur WS, Kim SW, Seo SW. Generation of a precise and efficient lane-level road map for intelligent vehicle systems. IEEE
                  Trans Veh Technol 2017;66:4517-33. DOI
               18. Godoy J, Artuñedo A, Villagra J. Self-Generated OSM-Based Driving Corridors. IEEE Access 2019;7:20113-25. DOI
               19. Jiang K, Yang D, Liu C, Zhang T, Xiao Z. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles.
                  Engineering 2019;5:305-18. DOI
               20. Poggenhans F, Pauls JH, Janosovits J, et al. Lanelet2: a high-definition map framework for the future of automated driving. In: 2018
                  21st International Conference on Intelligent Transportation Systems (ITSC). Maui, HI: IEEE; 2018. pp. 1672–79. Available from: https:
                  //ieeexplore.ieee.org/document/8569929/. [Last accessed on 29 Jan 2023]
               21. Marais J, Ambellouis S, Flancquart A, et al. Accurate localisation based on GNSS and propagation knowledge for safe applications in
                  guided transport. Procedia - Social and Behavioral Sciences 2012;48:796-805. DOI
               22. Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems. vol. 2. Berkeley, CA; 2014. pp.
                  1–9.
               23. Shan T, Englot B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ
                  International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 4758–65. DOI
               24. Qin C, Ye H, Pranata CE, et al. LINS: a lidar-inertial state estimator for robust and efficient navigation. In: 2020 IEEE International
                  Conference on Robotics and Automation (ICRA). IEEE; 2020. pp. 8899–906. DOI
               25. Shan T, Englot B, Meyers D, et al. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ
                  International Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. pp. 5135–42. DOI
               26. Campos C, Elvira R, Rodríguez JJG, M Montiel JM, D Tardós J. ORB-SLAM3: an accurate open-source library for visual, visual–inertial,
                  and multimap SLAM. IEEE Trans Robot 2021;37:1874-90 DOI
               27. Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot 2018;34:1004-20.
                  DOI
               28. Qin T, Shen S. Online temporal calibration for monocular visual-inertial systems. In: 2018 IEEE/RSJ International Conference on
                  Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 3662–69. DOI
               29. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: the KITTI dataset. Int J Robot Res 2013;32:1231–37. DOI
               30. Zermas D, Izzat I, Papanikolopoulos N. Fast segmentation of 3D point clouds: a paradigm on LiDAR data for autonomous vehicle
                  applications. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore: IEEE; 2017. pp.
                  5067–73. Available from: http://ieeexplore.ieee.org/document/7989591/. [Last accessed on 29 Jan 2023]
               31. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 1995;16:1190-208.
                  DOI
               32. Fritsch FN, Carlson RE. Monotone piecewise cubic interpolation. SIAM J Numer Anal 1980;17:238-46. DOI
               33. Kronrod AS. Nodes and weights of quadrature formulas. New York: Consultants Bureau 1965. DOI
               34. Wang H, Xue C, Zhou Y, Wen F, Zhang H. Visual semantic localization based on HD map for autonomous vehicles in urban scenarios.
                  In: 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China: IEEE; 2021. pp. 11255–61. Available from:
                  https://ieeexplore.ieee.org/document/9561459/. [Last accessed on 29 Jan 2023]
               35. Besl PJ, McKay ND. Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures. vol. 1611. Spie;
                  1992. pp. 586–606. DOI
               36. Biber P, Straßer W. The normal distributions transform: a new approach to laser scan matching. In: Proceedings 2003 IEEE/RSJ
                  International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). vol. 3. IEEE; 2003. pp. 2743–48. DOI
               37. Wilbers D, Merfels C, Stachniss C. Localization with sliding window factor graphs on third-Party maps for automated driving. In:
                  2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE; 2019. pp. 5951–57. Available from:
                  https://ieeexplore.ieee.org/document/8793971/. [Last accessed on 29 Jan 2023]
               38. Rusu RB, Marton ZC, Blodow N, Dolha M, Beetz M. Towards 3D Point cloud based object maps for household environments. Robot
                  Auton Syst 2008;56:927-41. DOI
               39. Ester M, Kriegel HP, Sander J, Xu X. A density-Based algorithm for discovering clusters in large spatial databases with noise. In:
                  Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD’96. AAAI Press; 1996. pp. 226–31.
                  DOI
               40. Dellaert F. Factor graphs and GTSAM: a hands-on introduction. Georgia Institute of Technology; 2012. DOI
               41. Grupp M. Evo: Python package for the evaluation of odometry and SLAM.; 2017. Available from: https://github.com/MichaelGrupp/evo.
                  [Last accessed on 29 Jan 2023]
   71   72   73   74   75   76   77   78   79   80   81