Page 20 - Read Online
P. 20

Page 232                                       Venkatesh  et al. Cancer Drug Resist 2021;4:223-32  I  http://dx.doi.org/10.20517/cdr.2020.84

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2021.


               REFERENCES
               1.   Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2:750-63.
               2.   Deneka AY, Boumber Y, Beck T, Golemis EA. Tumor-targeted drug conjugates as an emerging novel therapeutic approach in small cell
                   lung cancer (SCLC). Cancers 2019;11:1297.
               3.   Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug
                   Discov 2015;14:203-19.
               4.   Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev 2017;117:12133-64.
               5.   Ojima I. Guided molecular missiles for tumor-targeting chemotherapy - case studies using the second-generation toxoids as warheads.
                   Acc Chem Res 2008;41:108-19.
               6.   Riber CF, Smith AAA, Zelikin AN. Self-immolative linkers literally bridge disulfide chemistry and the realm of thiol-free drugs. Adv
                   Healthc Mater 2015;4:1887-90.
               7.   Lee MH, Sessler JL, Kim JS. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc Chem Res
                   2015;48:2935-46.
               8.   Go Y, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 2008;1780:1273-90.
               9.   Elkin SR, Lakoduk AM, Schmid SL. Endocytic pathways and endosomal trafficking: a primer. Wien Med wochenschr 2016;166:196-204.
               10.  Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009;78:857-902.
               11.  Yang J, Chen H, Vlahov IR, Cheng J, Low PS. Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET
                   imaging. Proc Natl Acad Sci USA 2006;103:13872-7.
               12.  Low PS, Kularatne SA. Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 2009;13:256-62.
               13.  Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of
                   cancer and inflammatory diseases. Acc Chem Res 2008;41:120-9.
               14.  Lv Q, Yang J, Zhang R, et al. Prostate-specific membrane antigen targeted therapy of prostate cancer using a DUPA-paclitaxel conjugate.
                   Mol Pharm 2018;15:1842-52.
               15.  Leamon CP, Reddy JA, Bloomfield A, et al. Prostate-specific membrane antigen-specific antitumor activity of a self-immolative tubulysin
                   conjugate. Bioconjug Chem 2019;30:1805-13.
               16.  Kularatne SA, Wang K, Santhapuram HR, Low PS. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer
                   using a PSMA inhibitor as a homing ligand. Mol Pharm 2009;6:780-9.
               17.  Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with
                   177Lu-labeled PSMA-617. J Nucl Med 2016;57:1170-6.
               18.  Hoff DDV, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients
                   with advanced solid tumors. Clin Cancer Res 2016;22:3157-63.
               19.  Giesel FL, Will L, Lawal I, et al. Intraindividual comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation
                   of patients with newly diagnosed prostate carcinoma: a pilot stud. J Nucl Med 2018;59:1076-80.
               20.  Kozikowski AP, Zhang J, Nan F, et al. Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy
                   as analgesic agents. J Med Chem 2004;47:1729-38.
               21.  Kozikowski AP, Nan F, Conti P, et al. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II
                   (NAALADase). J Med Chem 2001;44:298-301.
               22.  Wüstemann T, Haberkorn U, Babich J, Mier W. Targeting prostate cancer: prostate-specific membrane antigen based diagnosis and
                   therapy. Med Res Rev 2019;39:40-69.
               23.  Lu Y, Parker N, Kleindl PJ, et al. Antiinflammatory activity of a novel folic acid targeted conjugate of the mTOR inhibitor everolimus.
                   Mol Med 2015;21:584-96.
               24.  Lu Y, Stinnette TW, Westrick E, Klein PJ, Gehrke MA, Cross VA. Treatment of experimental adjuvant arthritis with a novel folate
                   receptor-targeted folic acid-aminopterin conjugate. Arthritis Res Ther 2011;13:R56.
               25.  Patil Y, Shmeeda H, Amitay Y, Ohana P, Kumar S, Gabizon A. Targeting of folate-conjugated liposomes with co-entrapped drugs to
                   prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine 2018;14:1407-16.
               26.  Liu H, Rajasekaran AK, Moy P, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer
                   Res 1998;58:4055-60.
   15   16   17   18   19   20   21   22   23   24   25