Page 46 - Read Online
P. 46

Zhang et al. Ageing Neur Dis 2022;2:16  https://dx.doi.org/10.20517/and.2022.15  Page 11 of 11

                    Front Genet 2019;10:875.  DOI  PubMed  PMC
               81.       Jiang W, Liu L, Chang Q, et al. Production of Wilson disease model rabbits with homology-directed precision point mutations in the
                    ATP7B gene using the CRISPR/Cas9 system. Sci Rep 2018;8:1332.  DOI  PubMed  PMC
               82.       Song Y, Zhang Y, Chen M, et al. Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated
                    homology-directed repair (HDR) in rabbits. EBioMedicine 2018;36:517-25.  DOI  PubMed  PMC
               83.       Song Y, Yuan L, Wang Y, et al. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cell Mol Life
                    Sci 2016;73:2959-68.  DOI  PubMed
               84.       Song J, Wang G, Hoenerhoff MJ, et al. Bacterial and pneumocystis infections in the lungs of gene-knockout rabbits with severe
                    combined immunodeficiency. Front Immunol 2018;9:429.  DOI  PubMed  PMC
               85.       Song J, Yang D, Ruan J, Zhang J, Chen YE, Xu J. Production of immunodeficient rabbits by multiplex embryo transfer and multiplex
                    gene targeting. Sci Rep 2017;7:12202.  DOI  PubMed  PMC
               86.       Yan Q, Zhang Q, Yang H, et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen 2014;3:12.
                    DOI  PubMed  PMC
               87.       Liu H, Sui T, Liu D, et al. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit. Gene 2018;647:261-7.
                    DOI  PubMed
               88.       Yang D, Song J, Zhang J, et al. Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene
                    expression. Sci Rep 2016;6:25161.  DOI  PubMed  PMC
               89.       Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat
                    Commun 2016;7:10548.  DOI  PubMed  PMC
               90.       Liu Z, Chen M, Chen S, et al. Highly efficient RNA-guided base editing in rabbit. Nat Commun 2018;9:2717.  DOI  PubMed  PMC
               91.       Liu Z, Shan H, Chen S, et al. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion.
                    FASEB J 2019;33:9210-9.  DOI  PubMed
               92.       Liu Z, Chen S, Shan H, et al. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death Dis 2020;11:36.
                    DOI  PubMed  PMC
               93.       Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci
                    China Life Sci 2021;64:1355-67.  DOI  PubMed
               94.       Liu Z, Chen S, Shan H, et al. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions.
                    BMC Biol 2020;18:111.  DOI  PubMed  PMC
               95.       Liu Z, Shan H, Chen S, et al. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. FASEB J
                    2020;34:588-96.  DOI  PubMed
               96.       Chen S, Xie W, Liu Z, et al. CRISPR start-loss: a novel and practical alternative for gene silencing through base-editing-induced start
                    codon mutations. Mol Ther Nucleic Acids 2020;21:1062-73.  DOI  PubMed  PMC
               97.       Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids
                    2022;27:1156-63.  DOI  PubMed  PMC
               98.       Qian Y, Zhao D, Sui T, et al. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system. Cell
                    Discov 2021;7:50.  DOI  PubMed  PMC
               99.       Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23.  DOI  PubMed
                    PMC
               100.      Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-6.  DOI  PubMed  PMC
               101.      Yang D, Xu J, Zhu T, et al. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol 2014;6:97-9.  DOI
                    PubMed  PMC
               102.      Kang  Y,  Chu  C,  Wang  F,  Niu  Y.  CRISPR/Cas9-mediated  genome  editing  in  nonhuman  primates.  Dis  Model  Mech
                    2019;12:dmm039982.  DOI  PubMed  PMC
               103.      Tu Z, Yang W, Yan S, Guo X, Li XJ. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of
                    neurodegenerative diseases. Mol Neurodegener 2015;10:35.  DOI  PubMed  PMC
               104.      Gaudelli NM, Komor AC, Rees HA, et al. Publisher correction: programmable base editing of A•T to G•C in genomic DNA without
                    DNA cleavage. Nature 2018;559:E8.  DOI  PubMed
               105.      Liu Z, Shan H, Chen S, et al. Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas9 variant. Cell
                    Discov 2019;5:58.  DOI  PubMed  PMC
               106.      Hånell A, Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Front Behav Neurosci
                    2014;8:252.  DOI  PubMed  PMC
   41   42   43   44   45   46   47   48   49   50   51