Page 45 - Read Online
P. 45
Page 10 of 11 Zhang et al. Ageing Neur Dis 2022;2:16 https://dx.doi.org/10.20517/and.2022.15
DOI PubMed
51. Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits.
Arterioscler Thromb Vasc Biol 2017;37:1068-75. DOI PubMed PMC
52. Song J, Zhong J, Guo X, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res
2013;23:1059-62. DOI PubMed PMC
53. Song Y, Liu T, Wang Y, et al. Mutation of the Sp1 binding site in the 5’ flanking region of SRY causes sex reversal in rabbits.
Oncotarget 2017;8:38176-83. DOI PubMed PMC
54. Song Y, Xu Y, Liang M, et al. CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits. Biosci Rep
2018;38:BSR20171490. DOI PubMed PMC
55. Sui T, Lau YS, Liu D, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech
2018;11:dmm032201. DOI PubMed PMC
56. Sui T, Xu L, Lau YS, et al. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting
ANO5 mutations. Cell Death Dis 2018;9:609. DOI PubMed PMC
57. Yuan L, Yao H, Xu Y, et al. CRISPR/Cas9-mediated mutation of αA-crystallin gene induces congenital cataracts in rabbits. Invest
Ophthalmol Vis Sci 2017;58:BIO34-41. DOI PubMed
58. Yuan L, Sui T, Chen M, et al. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep
2016;6:22024. DOI PubMed PMC
59. Lu R, Yuan T, Wang Y, et al. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-
density lipoprotein receptor (LDLR) on exon 7. EBioMedicine 2018;36:29-38. DOI PubMed PMC
60. Guo R, Wan Y, Xu D, et al. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep
2016;6:29855. DOI PubMed PMC
61. Lv Q, Yuan L, Deng J, et al. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci Rep 2016;6:25029. DOI
PubMed PMC
62. Sui T, Yuan L, Liu H, et al. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia
(XLH). Hum Mol Genet 2016;25:2661-71. DOI PubMed
63. Sui T, Liu D, Liu T, et al. LMNA-mutated rabbits: a model of premature aging syndrome with muscular dystrophy and dilated
cardiomyopathy. Aging Dis 2019;10:102-15. DOI PubMed PMC
64. Wu H, Liu Q, Shi H, et al. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell
Mol Life Sci 2018;75:3593-607. DOI PubMed
65. Honda A, Hirose M, Sankai T, et al. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using
CRISPR/Cas9. Exp Anim 2015;64:31-7. DOI PubMed PMC
66. Song Y, Xu Y, Deng J, et al. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3’ UTR induce graying in rabbit. Sci Rep
2017;7:1569. DOI PubMed PMC
67. Liu T, Wang J, Xie X, et al. DMP1 Ablation in the rabbit results in mineralization defects and abnormalities in haversian canal/osteon
microarchitecture. J Bone Miner Res 2019;34:1115-28. DOI PubMed
68. Lu Y, Liang M, Zhang Q, et al. Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and
epithelial-mesenchymal transition (EMT). Biochim Biophys Acta Mol Basis Dis 2019;1865:2356-67. DOI PubMed
69. Wan Y, Guo R, Deng M, et al. Efficient generation of CLPG1-edited rabbits using the CRISPR/Cas9 system. Reprod Domest Anim
2019;54:538-44. DOI PubMed
70. Song Y, Sui T, Zhang Y, et al. Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to
hyperglycemia and other typical features seen in MODY-2. Cell Mol Life Sci 2020;77:3265-77. DOI PubMed
71. Yang Y, Kang X, Hu S, et al. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. J Biol
Chem 2021;296:100464. DOI PubMed PMC
72. Zhou J, Yan Q, Tang C, et al. Development of a rabbit model of Wiskott-Aldrich syndrome. FASEB J 2021;35:e21226. DOI
PubMed
73. Yao B, Liang M, Liu H, et al. The minimal promoter (P1) of Xist is non-essential for X chromosome inactivation. RNA Biol
2020;17:623-9. DOI PubMed PMC
74. Zhang T, Lu Y, Song S, et al. “Double-muscling” and pelvic tilt phenomena in rabbits with the cystine-knot motif deficiency of
myostatin on exon 3. Biosci Rep 2019;39:BSR20190207. DOI PubMed PMC
75. Yan K, Zhang T, Zha Y, Liang J, Cheng Y. Construction of point mutation rabbits using CRISPR/Cas9. Zhejiang Da Xue Xue Bao Yi
Xue Ban 2021;50:229-38. DOI PubMed PMC
76. Xu J, Livraghi-Butrico A, Hou X, et al. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene.
JCI Insight 2021;6:139813. DOI PubMed PMC
77. Yang D, Liang X, Pallas B, et al. Production of CFTR-ΔF508 rabbits. Front Genet 2020;11:627666. DOI PubMed PMC
78. Xu Y, Liu H, Pan H, et al. CRISPR/Cas9-mediated disruption of fibroblast growth factor 5 in rabbits results in a systemic long hair
phenotype by prolonging anagen. Genes (Basel) 2020;11:297. DOI PubMed PMC
79. Hashikawa Y, Hayashi R, Tajima M, et al. Generation of knockout rabbits with X-linked severe combined immunodeficiency (X-
SCID) using CRISPR/Cas9. Sci Rep 2020;10:9957. DOI PubMed PMC
80. Xiao N, Li H, Shafique L, et al. A novel pale-yellow coat color of rabbits generated via MC1R mutation with CRISPR/Cas9 system.