Page 44 - Read Online
P. 44
Zhang et al. Ageing Neur Dis 2022;2:16 https://dx.doi.org/10.20517/and.2022.15 Page 9 of 11
19. Harel S, Watanabe K, Linke I, Schain RJ. Growth and development of the rabbit brain. Biol Neonate 1972;21:381-99. DOI PubMed
20. Yin P, Li S, Li XJ, Yang W. New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell
2022;13:707-20. DOI PubMed PMC
21. Bahney J, von Bartheld CS. The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate:
comparison with other species and brain regions. Anat Rec (Hoboken) 2018;301:697-710. DOI PubMed PMC
22. Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc
Natl Acad Sci U S A 2012;109 Suppl 1:10661-8. DOI PubMed PMC
23. Herculano-Houzel S, Ribeiro P, Campos L, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain
Behav Evol 2011;78:302-14. DOI PubMed PMC
24. Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A 2006;103:12138-43. DOI
PubMed PMC
25. Bradbury AG, Dickens GJ. Appropriate handling of pet rabbits: a literature review. J Small Anim Pract 2016;57:503-9. DOI
PubMed
26. Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T. Intracellular correlates of acquisition and long-term memory of classical
conditioning in purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci 1998;18:5498-507. PubMed PMC
27. Schreurs BG. Cholesterol and copper affect learning and memory in the rabbit. Int J Alzheimers Dis 2013;2013:518780. DOI
PubMed PMC
28. Weiss C, Bertolino N, Procissi D, et al. Diet-induced Alzheimer’s-like syndrome in the rabbit. Alzheimers Dement (N Y)
2022;8:e12241. DOI PubMed PMC
29. Woodruff-Pak DS, Agelan A, Del Valle L. A rabbit model of Alzheimer’s disease: valid at neuropathological, cognitive, and
therapeutic levels. J Alzheimers Dis 2007;11:371-83. DOI PubMed
30. Woodruff-Pak DS, Vogel RW 3rd, Wenk GL. Galantamine: effect on nicotinic receptor binding, acetylcholinesterase inhibition, and
learning. Proc Natl Acad Sci U S A 2001;98:2089-94. DOI PubMed PMC
31. Kneynsberg A, Collier TJ, Manfredsson FP, Kanaan NM. Quantitative and semi-quantitative measurements of axonal degeneration in
tissue and primary neuron cultures. J Neurosci Methods 2016;266:32-41. DOI PubMed PMC
32. Tudor EL, Galtrey CM, Perkinton MS, et al. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated
protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 2010;167:774-85. DOI PubMed
33. Devon RS, Orban PC, Gerrow K, et al. Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor
behavioral abnormalities. Proc Natl Acad Sci U S A 2006;103:9595-600. DOI PubMed PMC
34. Dutta S, Sengupta P. Rabbits and men: relating their ages. J Basic Clin Physiol Pharmacol 2018;29:427-35. DOI PubMed
35. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med
2018;284:643-63. DOI PubMed
36. Bridel C, van Wieringen WN, Zetterberg H, et al; the NFL Group. Diagnostic value of cerebrospinal fluid neurofilament light protein
in neurology: a systematic review and meta-analysis. JAMA Neurol 2019;76:1035-48. DOI PubMed PMC
37. Heller C, Foiani MS, Moore K, et al; GENFI. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal
dementia. J Neurol Neurosurg Psychiatry 2020;91:263-70. DOI PubMed
38. Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res Rev 2016;30:17-24. DOI PubMed
39. Fyfe I. A clinically useful MRI marker of PD? Nat Rev Neurol 2019;15:2-3. DOI PubMed
40. Mandino F, Cerri DH, Garin CM, et al. Animal functional magnetic resonance imaging: trends and path toward standardization.
Front Neuroinform 2019;13:78. DOI PubMed PMC
41. Müllhaupt D, Augsburger H, Schwarz A, et al. Magnetic resonance imaging anatomy of the rabbit brain at 3 T. Acta Vet Scand
2015;57:47. DOI PubMed PMC
42. Coppedè F, Mancuso M, Siciliano G, Migliore L, Murri L. Genes and the environment in neurodegeneration. Biosci Rep
2006;26:341-67. DOI PubMed
43. Chiò A, Logroscino G, Hardiman O, et al; Eurals Consortium. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler
2009;10:310-23. DOI PubMed PMC
44. Armstrong RA. Factors determining disease duration in Alzheimer’s disease: a postmortem study of 103 cases using the Kaplan-
Meier estimator and Cox regression. Biomed Res Int 2014;2014:623487. DOI PubMed PMC
45. Pagano G, Ferrara N, Brooks DJ, Pavese N. Age at onset and Parkinson disease phenotype. Neurology 2016;86:1400-7. DOI
PubMed PMC
46. Nair RR, Corrochano S, Gasco S, et al. Uses for humanised mouse models in precision medicine for neurodegenerative disease.
Mamm Genome 2019;30:173-91. DOI PubMed PMC
47. Bové J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson’s disease. NeuroRx 2005;2:484-94. DOI PubMed
PMC
48. Flisikowska T, Thorey IS, Offner S, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc
finger nucleases. PLoS One 2011;6:e21045. DOI PubMed PMC
49. Yang D, Zhang J, Xu J, et al. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. J Vis Exp 2013:e50957.
DOI PubMed PMC
50. Ji D, Zhao G, Songstad A, Cui X, Weinstein EJ. Efficient creation of an APOE knockout rabbit. Transgenic Res 2015;24:227-35.