Page 44 - Read Online
P. 44

Zhang et al. Ageing Neur Dis 2022;2:16  https://dx.doi.org/10.20517/and.2022.15  Page 9 of 11

               19.       Harel S, Watanabe K, Linke I, Schain RJ. Growth and development of the rabbit brain. Biol Neonate 1972;21:381-99.  DOI  PubMed
               20.       Yin P, Li S, Li XJ, Yang W. New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell
                    2022;13:707-20.  DOI  PubMed  PMC
               21.       Bahney J, von Bartheld CS. The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate:
                    comparison with other species and brain regions. Anat Rec (Hoboken) 2018;301:697-710.  DOI  PubMed  PMC
               22.       Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc
                    Natl Acad Sci U S A 2012;109 Suppl 1:10661-8.  DOI  PubMed  PMC
               23.       Herculano-Houzel S, Ribeiro P, Campos L, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain
                    Behav Evol 2011;78:302-14.  DOI  PubMed  PMC
               24.       Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A 2006;103:12138-43.  DOI
                    PubMed  PMC
               25.       Bradbury AG, Dickens GJ. Appropriate handling of pet rabbits: a literature review. J Small Anim Pract 2016;57:503-9.  DOI
                    PubMed
               26.       Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T. Intracellular correlates of acquisition and long-term memory of classical
                    conditioning in purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci 1998;18:5498-507.  PubMed  PMC
               27.       Schreurs BG. Cholesterol and copper affect learning and memory in the rabbit. Int J Alzheimers Dis 2013;2013:518780.  DOI
                    PubMed  PMC
               28.       Weiss C, Bertolino N, Procissi D, et al. Diet-induced Alzheimer’s-like syndrome in the rabbit. Alzheimers Dement (N Y)
                    2022;8:e12241.  DOI  PubMed  PMC
               29.       Woodruff-Pak DS, Agelan A, Del Valle L. A rabbit model of Alzheimer’s disease: valid at neuropathological, cognitive, and
                    therapeutic levels. J Alzheimers Dis 2007;11:371-83.  DOI  PubMed
               30.       Woodruff-Pak DS, Vogel RW 3rd, Wenk GL. Galantamine: effect on nicotinic receptor binding, acetylcholinesterase inhibition, and
                    learning. Proc Natl Acad Sci U S A 2001;98:2089-94.  DOI  PubMed  PMC
               31.       Kneynsberg A, Collier TJ, Manfredsson FP, Kanaan NM. Quantitative and semi-quantitative measurements of axonal degeneration in
                    tissue and primary neuron cultures. J Neurosci Methods 2016;266:32-41.  DOI  PubMed  PMC
               32.       Tudor EL, Galtrey CM, Perkinton MS, et al. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated
                    protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 2010;167:774-85.  DOI  PubMed
               33.       Devon RS, Orban PC, Gerrow K, et al. Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor
                    behavioral abnormalities. Proc Natl Acad Sci U S A 2006;103:9595-600.  DOI  PubMed  PMC
               34.       Dutta S, Sengupta P. Rabbits and men: relating their ages. J Basic Clin Physiol Pharmacol 2018;29:427-35.  DOI  PubMed
               35.       Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med
                    2018;284:643-63.  DOI  PubMed
               36.       Bridel C, van Wieringen WN, Zetterberg H, et al; the NFL Group. Diagnostic value of cerebrospinal fluid neurofilament light protein
                    in neurology: a systematic review and meta-analysis. JAMA Neurol 2019;76:1035-48.  DOI  PubMed  PMC
               37.       Heller C, Foiani MS, Moore K, et al; GENFI. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal
                    dementia. J Neurol Neurosurg Psychiatry 2020;91:263-70.  DOI  PubMed
               38.       Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res Rev 2016;30:17-24.  DOI  PubMed
               39.       Fyfe I. A clinically useful MRI marker of PD? Nat Rev Neurol 2019;15:2-3.  DOI  PubMed
               40.       Mandino F, Cerri DH, Garin CM, et al. Animal functional magnetic resonance imaging: trends and path toward standardization.
                    Front Neuroinform 2019;13:78.  DOI  PubMed  PMC
               41.       Müllhaupt D, Augsburger H, Schwarz A, et al. Magnetic resonance imaging anatomy of the rabbit brain at 3 T. Acta Vet Scand
                    2015;57:47.  DOI  PubMed  PMC
               42.       Coppedè F, Mancuso M, Siciliano G, Migliore L, Murri L. Genes and the environment in neurodegeneration. Biosci Rep
                    2006;26:341-67.  DOI  PubMed
               43.       Chiò A, Logroscino G, Hardiman O, et al; Eurals Consortium. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler
                    2009;10:310-23.  DOI  PubMed  PMC
               44.       Armstrong RA. Factors determining disease duration in Alzheimer’s disease: a postmortem study of 103 cases using the Kaplan-
                    Meier estimator and Cox regression. Biomed Res Int 2014;2014:623487.  DOI  PubMed  PMC
               45.       Pagano G, Ferrara N, Brooks DJ, Pavese N. Age at onset and Parkinson disease phenotype. Neurology 2016;86:1400-7.  DOI
                    PubMed  PMC
               46.       Nair RR, Corrochano S, Gasco S, et al. Uses for humanised mouse models in precision medicine for neurodegenerative disease.
                    Mamm Genome 2019;30:173-91.  DOI  PubMed  PMC
               47.       Bové J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson’s disease. NeuroRx 2005;2:484-94.  DOI  PubMed
                    PMC
               48.       Flisikowska T, Thorey IS, Offner S, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc
                    finger nucleases. PLoS One 2011;6:e21045.  DOI  PubMed  PMC
               49.       Yang D, Zhang J, Xu J, et al. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. J Vis Exp 2013:e50957.
                    DOI  PubMed  PMC
               50.       Ji D, Zhao G, Songstad A, Cui X, Weinstein EJ. Efficient creation of an APOE knockout rabbit. Transgenic Res 2015;24:227-35.
   39   40   41   42   43   44   45   46   47   48   49