Page 50 - Read Online
P. 50

Page 138                                                  Villavisanis et al. Art Int Surg. 2025;5:133-38  https://dx.doi.org/10.20517/ais.2024.89

                   nonsyndromic sagittal craniosynostosis: a stepwise and machine learning algorithm approach. J Craniofac Surg. 2022;33:2333-8.  DOI
                   PubMed
               15.      Ono S, Hayashi H, Ohi H, Ogawa R. Imaging studies for preoperative planning of perforator flaps: an overview. Clin Plast Surg.
                   2017;44:21-30.  DOI  PubMed
               16.      Nahabedian MY, Momen B, Galdino G, Manson PN. Breast reconstruction with the free TRAM or DIEP flap: patient selection, choice
                   of flap, and outcome. Plast Reconstr Surg. 2002;110:466-75.  DOI  PubMed
               17.      Cevik J, Seth I, Hunter-Smith DJ, Rozen WM. A history of innovation: tracing the evolution of imaging modalities for the preoperative
                   planning of microsurgical breast reconstruction. J Clin Med. 2023;12:5246.  DOI  PubMed  PMC
               18.      Smit JM, Klein S, Werker PM. An overview of methods for vascular mapping in the planning of free flaps. J Plast Reconstr Aesthet
                   Surg. 2010;63:e674-82.  DOI  PubMed
               19.      Thimmappa ND. MRA for preoperative planning and postoperative management of perforator flap surgeries: a review. J Magn Reson
                   Imaging. 2024;59:797-811.  DOI  PubMed
               20.      Lim B, Cevik J, Seth I, et al. Evaluating artificial intelligence’s role in teaching the reporting and interpretation of computed
                   tomographic angiography for preoperative planning of the deep inferior epigastric artery perforator flap. JPRAS Open. 2024;40:273-
                   85.  DOI  PubMed  PMC
               21.      Bassani S, Eccher A, Molteni G. Harnessing the power of artificial intelligence: revolutionizing free flaps monitoring in head and neck
                   tumor treatment. Crit Rev Oncog. 2023;28:25-30.  DOI  PubMed
               22.      Asaad M, Lu SC, Hassan AM, et al. The use of machine learning for predicting complications of free-flap head and neck
                   reconstruction. Ann Surg Oncol. 2023;30:2343-52.  DOI  PubMed
               23.      Formeister EJ, Baum R, Knott PD, et al. Machine learning for predicting complications in head and neck microvascular free tissue
                   transfer. Laryngoscope. 2020;130:E843-9.  DOI  PubMed
               24.      Moosa S, Dydynsky R. The role of artificial intelligence in predicting flap outcomes in plastic surgery: protocol of a systematic
                   review. URNCST J. 2022;6:1-8.  DOI
               25.      Li K, Zhang Z, Nicoli F, et al. Application of indocyanine green in flap surgery: a systematic review. J Reconstr Microsurg.
                   2018;34:77-86.  DOI  PubMed
               26.      Singaravelu A, Dalli J, Potter S, Cahill RA. Artificial intelligence for optimum tissue excision with indocyanine green fluorescence
                   angiography for flap reconstructions: proof of concept. JPRAS Open. 2024;41:389-93.  DOI  PubMed  PMC
               27.      Atkinson CJ, Seth I, Xie Y, et al. Artificial intelligence language model performance for rapid intraoperative queries in plastic surgery:
                   ChatGPT and the deep inferior epigastric perforator flap. J Clin Med. 2024;13:900.  DOI  PubMed  PMC
               28.      Battaglia S, Badiali G, Cercenelli L, et al. Combination of CAD/CAM and augmented reality in free fibula bone harvest. Plast
                   Reconstr Surg Glob Open. 2019;7:e2510.  DOI  PubMed  PMC
               29.      Cercenelli L, Babini F, Badiali G, et al. Augmented reality to assist skin paddle harvesting in osteomyocutaneous fibular flap
                   reconstructive surgery: a pilot evaluation on a 3D-printed leg phantom. Front Oncol. 2021;11:804748.  DOI  PubMed  PMC
               30.      Tang Y, Guo Q, Li X, Huang Y, Kuang W, Luo L. Augmented reality-assisted systematic mapping of anterolateral thigh perforators.
                   BMC Musculoskelet Disord. 2022;23:1047.  DOI  PubMed  PMC
               31.      Falola RA, Lombana NF, Rodriguez-Unda NA, et al. Augmented reality microsurgery: proof of concept for a novel approach to
                   microsurgical field visualization in plastic surgery. Plast Reconstr Surg. 2024;153:650e-5.  DOI  PubMed
               32.      Selber JC, Angel Soto-Miranda M, Liu J, Robb G. The survival curve: factors impacting the outcome of free flap take-backs. Plast
                   Reconstr Surg. 2012;130:105-13.  DOI  PubMed
               33.      Kim J, Lee SM, Kim DE, et al. Development of an automated free flap monitoring system based on artificial intelligence. JAMA Netw
                   Open. 2024;7:e2424299.  DOI  PubMed  PMC
               34.      O’Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction
                   model for flap failure in microvascular breast reconstruction. Ann Surg Oncol. 2020;27:3466-75.  DOI  PubMed
               35.      Kuo P, Wu S, Chien P, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in
                   patients receiving surgery for head and neck cancer. Oncotarget. 2018;9:13768-82.  DOI  PubMed  PMC
   45   46   47   48   49   50   51   52   53   54   55