Page 49 - Read Online
P. 49

Villavisanis et al. Art Int Surg. 2025;5:133-38  https://dx.doi.org/10.20517/ais.2024.89                                                  Page 137

               worthwhile pursuit.


               DECLARATIONS
               Authors’ contributions
               Involved in critically drafting and editing this manuscript: Villavisanis DF, Elhage SA, Crystal DT, Terry P,
               Serletti JM, Percec I

               Availability of data and materials
               Publicly available.


               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Hirigoyen MB, Urken ML, Weinberg H. Free flap monitoring: a review of current practice. Microsurgery. 1995;16:723-6.  DOI
                   PubMed
               2.       Salgado CJ, Moran SL, Mardini S. Flap monitoring and patient management. Plast Reconstr Surg. 2009;124:e295-302.  DOI  PubMed
               3.       Hidalgo DA, Disa JJ, Cordeiro PG, Hu QY. A review of 716 consecutive free flaps for oncologic surgical defects: refinement in donor-
                   site selection and technique. Plast Reconstr Surg. 1998;102:722-32.  PubMed
               4.       Haddock NT, Lakatta AC, Teotia SS. Categorizing patient selection, outcomes, and indications in a decade of 405 profunda artery
                   perforator flaps. Plast Reconstr Surg. 2024;154:632e-40.  DOI  PubMed
               5.       Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86:334-8.  DOI
                   PubMed  PMC
               6.       Novakovsky G, Dexter N, Libbrecht MW, Wasserman WW, Mostafavi S. Obtaining genetics insights from deep learning via
                   explainable artificial intelligence. Nat Rev Genet. 2023;24:125-37.  DOI  PubMed
               7.       Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71:2668-79.  DOI
                   PubMed
               8.       Topalovic M, Das N, Burgel PR, et al; Pulmonary Function Study Investigators; Pulmonary Function Study Investigators. Artificial
                   intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J. 2019;53:1801660.  DOI
                   PubMed
               9.       Kurmis AP, Ianunzio JR. Artificial intelligence in orthopedic surgery: evolution, current state and future directions. Arthroplasty.
                   2022;4:9.  DOI  PubMed  PMC
               10.      Lareyre F, Adam C, Carrier M, Chakfé N, Raffort J. Artificial intelligence for education of vascular surgeons. Eur J Vasc Endovasc
                   Surg. 2020;59:870-1.  DOI  PubMed
               11.      Kwon DY, Villavisanis DF, Oleru O, et al. Implications for the use of artificial intelligence in plastic surgery research and practice.
                   Plast Reconstr Surg. 2024;153:862e-3.  DOI  PubMed  PMC
               12.      Blum JD, Beiriger J, Villavisanis DF, et al. Machine learning in metopic craniosynostosis: does phenotypic severity predict long-term
                   esthetic outcome? J Craniofac Surg. 2023;34:58-64.  DOI  PubMed  PMC
               13.      Villavisanis DF, Khandelwal P, Zapatero ZD, et al. Craniofacial soft-tissue anthropomorphic database with magnetic resonance
                   imaging and unbiased diffeomorphic registration. Plast Reconstr Surg. 2024;153:667-77.  DOI  PubMed
               14.      Villavisanis DF, Shakir S, Zhao C, et al. Predicting changes in cephalic index following spring-mediated cranioplasty for
   44   45   46   47   48   49   50   51   52   53   54