Page 49 - Read Online
P. 49
Ding et al. Art Int Surg 2024;4:109-38 https://dx.doi.org/10.20517/ais.2024.16 Page 133
M, Farinella GM, Hassner T, editors. Computer Vision - ECCV 2022. Cham: Springer; 2022. pp. 280-96. DOI
132. Zhang H, Li F, Liu S, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv. [Preprint.]
Jul 11, 2022 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2203.03605.
133. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention mask transformer for universal image segmentation. In:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022 Jun 18-24; New Orleans, LA, USA. IEEE;
2022. pp. 1280-9. DOI
134. Zou X, Dou ZY, Yang J, et al. Generalized decoding for pixel, image, and language. In: 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR); 2023 Jun 17-24; Vancouver, BC, Canada. IEEE; 2023. pp. 15116-27. DOI
135. Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from natural language supervision. Available from: http://
proceedings.mlr.press/v139/radford21a.html. [Last accessed on 3 Jul 2024].
136. Li LH, Zhang P, Zhang H, et al. Grounded language-image pre-training. In: 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR); 2022 Jun 18-24; New Orleans, LA, USA. IEEE; 2022. pp. 10955-65. DOI
137. Zhong Y, Yang J, Zhang P, et al. RegionCLIP: region-based language-image pretraining. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR); 2022 Jun 18-24; New Orleans, LA, USA. IEEE; 2022. 16772-82. DOI
138. Luo H, Bao J, Wu Y, He X, Li T. SegCLIP: patch aggregation with learnable centers for open-vocabulary semantic segmentation.
Available from: https://proceedings.mlr.press/v202/luo23a.html. [Last accessed on 3 Jul 2024].
139. He Z, Unberath M, Ke J, Shen Y. TransNuSeg: a lightweight multi-task transformer for nuclei segmentation. In: Greenspan H, et al.,
editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. Cham: Springer; 2023. pp. 206-15. DOI
140. Shen Y, Guo P, Wu J, et al. MoViT: Memorizing vision transformers for medical image analysis. In: Cao X, Xu X, Rekik I, Cui Z,
Ouyang X, editors. Machine Learning in Medical Imaging. Cham: Springer; 2024. pp. 205-13. DOI
141. Oguine K, Soberanis-Muku R, Drenkow N, Unberath M. From generalization to precision: exploring sam for tool segmentation in
surgical environments. Med Imag Proc 2024 Imag Process 2024;12926:7-12. DOI
142. Peng Z, Xu Z, Zeng Z, Yang X, Shen W. SAM-PARSER: fine-tuning SAM efficiently by parameter space reconstruction. arXiv.
[Preprint.] Dec 18, 2023 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2308.14604.
143. Li X, Zhang Y, Zhao L. Multi-prompt fine-tuning of foundation models for enhanced medical image segmentation. arXiv. [Preprint.]
Oct 3, 2023 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2310.02381.
144. Tyagi AK, Mishra V, Prathosh AP, Mausam. Guided prompting in sam for weakly supervised cell segmentation in histopathological
images. arXiv. [Preprint.] Nov 29, 2023 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2311.17960.
145. Paranjape JN, Nair NG, Sikder S, Vedula SS, Patel VM. AdaptiveSAM: towards efficient tuning of SAM for surgical scene
segmentation. arXiv. [Preprint.] Aug 7, 2023 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2308.03726.
146. Yue W, Zhang J, Hu K, Xia Y, Luo J, Wang Z. SurgicalSAM: efficient class promptable surgical instrument segmentation. arXiv.
[Preprint.] Dec 21, 2023 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2308.08746.
147. Wang A, Islam M, Xu M, Zhang Y, Ren H. SAM meets robotic surgery: an empirical study in robustness perspective. arXiv.
[Preprint.] Apr 28, 2023 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2304.14674.
148. He Y, Yu H, Liu X, Yang Z, Sun W, Mian A. Deep learning based 3D segmentation: a survey. arXiv. [Preprint.] Jul 26, 2023
[accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2103.05423.
149. Qian R, Lai X, Li X. 3D object detection for autonomous driving: a survey. Pattern Recognit 2022;130:108796. DOI
150. Qi CR, Su H, Mo K, Guibas LJ. Pointnet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. pp. 77-85. DOI
151. Wang W, Neumann U. Depth-aware CNN for RGB-D segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors.
Computer Vision - ECCV 2018. Cham: Springer; 2018. pp. 144-61. DOI
152. Zhang Y, Lu J, Zhou J. Objects are different: flexible monocular 3d object detection. In: 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA. IEEE; 2021. pp. 3288-97. DOI
153. Wang Y, Guizilini VC, Zhang T, Wang Y, Zhao H, Solomon J. DETR3D: 3D object detection from multi-view images via 3D-to-2D
queries. Available from: https://proceedings.mlr.press/v164/wang22b.html. [Last accessed on 3 Jul 2024].
154. Maninis KK, Caelles S, Chen Y, et al. Video object segmentation without temporal information. IEEE Trans Pattern Anal Mach
Intell 2019;41:1515-30. DOI
155. Caelles S, Maninis KK, Pont-Tuset J, Leal-Taixé L, Cremers D, Van Gool L. One-shot video object segmentation. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. pp. 221-30.
DOI
156. Hu YT, Huang JB, Schwing A. MaskRNN: instance level video object segmentation. Available from: https://proceedings.neurips.cc/
paper/2017/hash/6c9882bbac1c7093bd25041881277658-Abstract.html. [Last accessed on 3 Jul 2024].
157. Ventura C, Bellver M, Girbau A, Salvador A, Marques F, Giro-i-Nieto X. RVOS: end-to-end recurrent network for video object
segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 15-20; Long Beach, CA,
USA. IEEE; 2019. pp. 5272-81. DOI
158. Oh SW, Lee JY, Xu N, Kim SJ. Video object segmentation using space-time memory networks. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV); 2019 Oct 27 - Nov 2; Seoul, Korea (South). IEEE; 2019. pp. 9225-34. DOI
159. Cheng HK, Tai YW, Tang CK. Rethinking space-time networks with improved memory coverage for efficient video object
segmentation. Available from: https://proceedings.neurips.cc/paper/2021/hash/61b4a64be663682e8cb037d9719ad8cd-Abstract.html.

