Page 48 - Read Online
P. 48

Page 132                           Ding et al. Art Int Surg 2024;4:109-38  https://dx.doi.org/10.20517/ais.2024.16

                    Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13-19; Seattle, WA, USA. IEEE; 2020. pp. 10186-92.  DOI
               104.      Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: 2017 IEEE International Conference on
                    Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. IEEE; 2017. pp. 2980-8.  DOI
               105.      Law H, Deng J. CornerNet: detecting objects as paired keypoints. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors.
                    Computer Vision - ECCV 2018. Cham: Springer; 2018. pp. 765-81.  DOI
               106.      Zhou X, Wang D, Krähenbühl P. Objects as points. arXiv. [Preprint.] Apr 16, 2019 [accessed 2024 Jul 3]. Available from: https://
                    arxiv.org/abs/1904.07850.
               107.      Yang Z, Liu S, Hu H, Wang L, Lin S. Reppoints: point set representation for object detection. In: 2019 IEEE/CVF International
                    Conference on Computer Vision (ICCV); 2019 Oct 27 - Nov 2; Seoul, Korea (South). IEEE; 2019. pp. 9657-66.  DOI
               108.      Tian Z, Shen C, Chen H, He T. FCOS: a simple and strong anchor-free object detector. IEEE Trans Pattern Anal Mach Intell
                    2022;44:1922-33.  DOI  PubMed
               109.      He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV); 2017
                    Oct 22-29; Venice, Italy. IEEE; 2017. pp. 2980-8.  DOI
               110.      Huang Z, Huang L, Gong Y, Huang C, Wang X. Mask scoring R-CNN. In: 2019 IEEE/CVF Conference on Computer Vision and
                    Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, CA, USA. IEEE; 2019. pp. 6402-11.  DOI
               111.      Chen K, Pang J, Wang J, et al. Hybrid task cascade for instance segmentation. In: 2019 IEEE/CVF Conference on Computer Vision
                    and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, CA, USA. IEEE; 2019. pp. 4969-78.  DOI
               112.      Ding H, Qiao S, Yuille A, Shen W. Deeply shape-guided cascade for instance segmentation. In: 2021 IEEE/CVF Conference on
                    Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA. IEEE; 2021. pp. 8274-84.  DOI
               113.      Bolya D, Zhou C, Xiao F, Lee YJ. Yolact: real-time instance segmentation. In: 2019 IEEE/CVF International Conference on
                    Computer Vision (ICCV); 2019 Oct 27 - Nov 2; Seoul, Korea (South). IEEE; 2019. pp. 9156-65.  DOI
               114.      Wang X, Kong T, Shen C, Jiang Y, Li L. SOLO: segmenting objects by locations. In: Vedaldi A, Bischof H, Brox T, Frahm J,
                    editors. Computer Vision - ECCV 2020. Cham: Springer; 2020. pp. 649-65.  DOI
               115.      Kirillov A, Wu Y, He K, Girshick R. Pointrend: image segmentation as rendering. In: 2020 IEEE/CVF Conference on Computer
                    Vision and Pattern Recognition (CVPR); 2020 Jun 13-19; Seattle, WA, USA. IEEE; 2020. pp. 9796-805.  DOI
               116.      Tian Z, Shen C, Chen H. Conditional convolutions for instance segmentation. In: Vedaldi A, Bischof H, Brox T, Frahm J, editors.
                    Computer Vision - ECCV 2020. Cham: Springer; 2020. pp. 282-98.  DOI
               117.      Liu K, Zhao Z, Shi P, Li F, Song H. Real-time surgical tool detection in computer-aided surgery based on enhanced feature-fusion
                    convolutional neural network. J Comput Des Eng 2022;9:1123-34.  DOI
               118.      Bamba Y, Ogawa S, Itabashi M, et al. Object and anatomical feature recognition in surgical video images based on a convolutional
                    neural network. Int J Comput Assist Radiol Surg 2021;16:2045-54.  DOI  PubMed  PMC
               119.      Cerón JCÁ, Ruiz GO, Chang L, Ali S. Real-time instance segmentation of surgical instruments using attention and multi-scale feature
                    fusion. Med Image Anal 2022;81:102569.  DOI  PubMed
               120.      Wang A, Islam M, Xu M, Ren H. Rethinking surgical instrument segmentation: a background image can be all you need. In: Wang L,
                    Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Cham:
                    Springer; 2022. pp. 355-64.  DOI
               121.      Zhang Z, Rosa B, Nageotte F. Surgical tool segmentation using generative adversarial networks with unpaired training data. IEEE
                    Robot Autom Lett 2021;6:6266-73.  DOI
               122.      Yang L, Gu Y, Bian G, Liu Y. An attention-guided network for surgical instrument segmentation from endoscopic images. Comput
                    Biol Med 2022;151:106216.  DOI
               123.      Ding H, Wu JY, Li Z, Unberath M. Rethinking causality-driven robot tool segmentation with temporal constraints. Int J Comput
                    Assist Radiol Surg 2023;18:1009-16.  DOI  PubMed
               124.      Colleoni E, Edwards P, Stoyanov D. Synthetic and real inputs for tool segmentation in robotic surgery. In: Martel AL, et al., editors.
                    Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. Cham: Springer; 2020. pp. 700-10.  DOI
               125.      Lee K, Choi MK, Jung H. DavinciGAN: unpaired surgical instrument translation for data augmentation. Available from: http://
                    proceedings.mlr.press/v102/lee19a.html. [Last accessed on 3 Jul 2024].
               126.      Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: 2021
                    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA. IEEE; 2021. pp.
                    6877-86.  DOI
               127.      Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. Segformer: simple and efficient design for semantic segmentation with
                    transformers. In: Advances in neural information processing systems 34 (NeurIPS 2021). Available from: https://proceedings.neurips.
                    cc/paper/2021/hash/64f1f27bf1b4ec22924fd0acb550c235-Abstract.html. [Last accessed on 3 Jul 2024].
               128.      Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: Vedaldi A,
                    Bischof H, Brox T, Frahm J, editors. Computer Vision - ECCV 2020. Cham: Springer; 2020. pp. 213-29.  DOI
               129.      Zhu X, Su W, Lu L, Li B, Wang X, Dai J. Deformable detr: deformable transformers for end-to-end object detection. arXiv. [Preprint.
                    ] Mar 18, 2021 [accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/2010.04159.
               130.      Meng D, Chen X, Fan Z, et al. Conditional DETR for fast training convergence. In: 2021 IEEE/CVF International Conference on
                    Computer Vision (ICCV); 2021 Oct 10-17; Montreal, QC, Canada. IEEE; 2021. pp. 3631-40.  DOI
               131.      Li Y, Mao H, Girshick R, He K. Exploring plain vision transformer backbones for object detection. In: Avidan S, Brostow G, Cissé
   43   44   45   46   47   48   49   50   51   52   53