Page 45 - Read Online
P. 45

Ding et al. Art Int Surg 2024;4:109-38  https://dx.doi.org/10.20517/ais.2024.16     Page 129

                    reasoning. In: Greenspan H, et al., editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. Cham:
                    Springer; 2023. pp. 647-57.  DOI
               19.       Zhang D, Wang R, Lo B. Surgical gesture recognition based on bidirectional multi-layer independently RNN with explainable spatial
                    feature extraction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021 May 30 - Jun 5; Xi’an, China.
                    IEEE; 2021. pp. 1350-6.  DOI
               20.       DiPietro R, Ahmidi N, Malpani A, et al. Segmenting and classifying activities in robot-assisted surgery with recurrent neural
                    networks. Int J Comput Assist Radiol Surg 2019;14:2005-20.  DOI  PubMed
               21.       Dipietro R, Hager GD. Automated surgical activity recognition with one labeled sequence. In: Shen D, et al., editors. Medical Image
                    Computing and Computer Assisted Intervention - MICCAI 2019. Cham: Springer; 2019. pp. 458-66.  DOI
               22.       Reiley CE, Lin HC, Yuh DD, Hager GD. Review of methods for objective surgical skill evaluation. Surg Endosc 2011;25:356-66.
                    DOI  PubMed
               23.       Lam K, Chen J, Wang Z, et al. Machine learning for technical skill assessment in surgery: a systematic review. NPJ Digit Med
                    2022;5:24.  DOI  PubMed  PMC
               24.       Alapatt D, Murali A, Srivastav V, Mascagni P, Consortium A, Padoy N. Jumpstarting surgical computer vision. arXiv. [Preprint.]
                    Dec 10, 2023 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/2312.05968.
               25.       Ramesh S, Srivastav V, Alapatt D, et al. Dissecting self-supervised learning methods for surgical computer vision. Med Image Anal
                    2023;88:102844.  DOI
               26.       Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W. Imagenet-trained cnns are biased towards texture;
                    increasing shape bias improves accuracy and robustness. arXiv. [Preprint.] Nov 29, 2018 [accessed 2024 Jul 2]. Available from:
                    https://arxiv.org/abs/1811.12231.
               27.       Glocker B, Jones C, Roschewitz M, Winzeck S. Risk of bias in chest radiography deep learning foundation models. Radiol Artif Intell
                    2023;5:e230060.  DOI  PubMed  PMC
               28.       Geirhos R, Jacobsen J, Michaelis C, et al. Shortcut learning in deep neural networks. Nat Mach Intell 2020;2:665-73.  DOI
               29.       Wen C, Qian J, Lin J, Teng J, Jayaraman D, Gao Y. Fighting fire with fire: avoiding dnn shortcuts through priming. Available from:
                    https://proceedings.mlr.press/v162/wen22d.html. [Last accessed on 2 Jul 2024].
               30.      Olah C, Satyanarayan A, Johnson I, et al. The building blocks of interpretability. Distill 2018;3:e10.  DOI
               31.      Ahmed H, Devoto L. The potential of a digital twin in surgery. Surg Innov 2021;28:509-10.  DOI  PubMed  PMC
               32.       Bjelland Ø, Rasheed B, Schaathun HG, et al. Toward a digital twin for arthroscopic knee surgery: a systematic review. IEEE Access
                    2022;10:45029-52.  DOI
               33.       Erol T, Mendi AF, Doğan D. The digital twin revolution in healthcare. In: 2020 4th International Symposium on Multidisciplinary
                    Studies and Innovative Technologies (ISMSIT); 2020 Oct 22-24; Istanbul, Turkey. IEEE; 2020. pp. 1-7.  DOI
               34.       Representations of geometry for computer graphics. Available from: https://graphics.stanford.edu/courses/cs233-24-winter-v1/
                    ReferencedPapers/60082881-Presentations-of-Geometry-for-Computer-Graphics.pdf. [Last accessed on 2 Jul 2024].
               35.       Levoy  M,  Whitted  T.  The  use  of  points  as  a  display  primitive.  2000.  Available  from:  https://api.semanticscholar.org/
                    CorpusID:12672240. [Last accessed on 2 Jul 2024].
               36.       Botsch M, Kobbelt L, Pauly M, Alliez P, Levy B. Polygon mesh processing. A K Peters/CRC Press; 2010. Available from: http://
                    www.crcpress.com/product/isbn/9781568814261. [Last accessed on 2 Jul 2024].
               37.       Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci
                    2016;374:20150202.  DOI  PubMed  PMC
               38.       Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: Whitton MC, editor. Seminal graphics papers: pushing the
                    boundaries. New York: ACM; 2023. pp. 157-64.  DOI
               39.       Edwards GJ, Taylor CJ, Cootes TF. Interpreting face images using active appearance models. In: Proceedings Third IEEE
                    International Conference on Automatic Face and Gesture Recognition; 1998 Apr 14-16; Nara, Japan. IEEE; 1998. pp. 300-5.  DOI
               40.       Karamizadeh S, Abdullah SM, Manaf AA, Zamani M, Hooman A. An overview of principal component analysis. J Signal Inf
                    Process 2013;4:173-5.  DOI
               41.       Liu  X,  Killeen  BD,  Sinha  A,  et  al.  Neighborhood  normalization  for  robust  geometric  feature learning.  In:  2021  IEEE/CVF
                    Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA. IEEE; 2021. pp. 13049-
                    58.  DOI
               42.       Drenkow N, Sani N, Shpitser I, Unberath M. A systematic review of robustness in deep learning for computer vision: mind the gap?
                    arXiv. [Preprint.] Dec 1, 2021 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/2112.00639.
               43.       Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. Appl Math Sci 2004;57:B15.  DOI
               44.       Salomon D. Curves and surfaces for computer graphics. New York: Springer. 2006.  DOI
               45.       Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw 1989;2:359-66.
                    DOI
               46.       Michalkiewicz M, Pontes JK, Jack D, Baktashmotlagh M, Eriksson A. Deep level sets: implicit surface representations for 3d shape
                    inference. arXiv. [Preprint.] Jan 21, 2019 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/1901.06802.
               47.       Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S. Deepsdf: learning continuous signed distance functions for shape
                    representation. arXiv. [Preprint.] Jan 16, 2019 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/1901.05103.
               48.       Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R. NeRF: representing scenes as neural radiance fields for
   40   41   42   43   44   45   46   47   48   49   50