Page 45 - Read Online
P. 45
Ding et al. Art Int Surg 2024;4:109-38 https://dx.doi.org/10.20517/ais.2024.16 Page 129
reasoning. In: Greenspan H, et al., editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. Cham:
Springer; 2023. pp. 647-57. DOI
19. Zhang D, Wang R, Lo B. Surgical gesture recognition based on bidirectional multi-layer independently RNN with explainable spatial
feature extraction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021 May 30 - Jun 5; Xi’an, China.
IEEE; 2021. pp. 1350-6. DOI
20. DiPietro R, Ahmidi N, Malpani A, et al. Segmenting and classifying activities in robot-assisted surgery with recurrent neural
networks. Int J Comput Assist Radiol Surg 2019;14:2005-20. DOI PubMed
21. Dipietro R, Hager GD. Automated surgical activity recognition with one labeled sequence. In: Shen D, et al., editors. Medical Image
Computing and Computer Assisted Intervention - MICCAI 2019. Cham: Springer; 2019. pp. 458-66. DOI
22. Reiley CE, Lin HC, Yuh DD, Hager GD. Review of methods for objective surgical skill evaluation. Surg Endosc 2011;25:356-66.
DOI PubMed
23. Lam K, Chen J, Wang Z, et al. Machine learning for technical skill assessment in surgery: a systematic review. NPJ Digit Med
2022;5:24. DOI PubMed PMC
24. Alapatt D, Murali A, Srivastav V, Mascagni P, Consortium A, Padoy N. Jumpstarting surgical computer vision. arXiv. [Preprint.]
Dec 10, 2023 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/2312.05968.
25. Ramesh S, Srivastav V, Alapatt D, et al. Dissecting self-supervised learning methods for surgical computer vision. Med Image Anal
2023;88:102844. DOI
26. Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W. Imagenet-trained cnns are biased towards texture;
increasing shape bias improves accuracy and robustness. arXiv. [Preprint.] Nov 29, 2018 [accessed 2024 Jul 2]. Available from:
https://arxiv.org/abs/1811.12231.
27. Glocker B, Jones C, Roschewitz M, Winzeck S. Risk of bias in chest radiography deep learning foundation models. Radiol Artif Intell
2023;5:e230060. DOI PubMed PMC
28. Geirhos R, Jacobsen J, Michaelis C, et al. Shortcut learning in deep neural networks. Nat Mach Intell 2020;2:665-73. DOI
29. Wen C, Qian J, Lin J, Teng J, Jayaraman D, Gao Y. Fighting fire with fire: avoiding dnn shortcuts through priming. Available from:
https://proceedings.mlr.press/v162/wen22d.html. [Last accessed on 2 Jul 2024].
30. Olah C, Satyanarayan A, Johnson I, et al. The building blocks of interpretability. Distill 2018;3:e10. DOI
31. Ahmed H, Devoto L. The potential of a digital twin in surgery. Surg Innov 2021;28:509-10. DOI PubMed PMC
32. Bjelland Ø, Rasheed B, Schaathun HG, et al. Toward a digital twin for arthroscopic knee surgery: a systematic review. IEEE Access
2022;10:45029-52. DOI
33. Erol T, Mendi AF, Doğan D. The digital twin revolution in healthcare. In: 2020 4th International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT); 2020 Oct 22-24; Istanbul, Turkey. IEEE; 2020. pp. 1-7. DOI
34. Representations of geometry for computer graphics. Available from: https://graphics.stanford.edu/courses/cs233-24-winter-v1/
ReferencedPapers/60082881-Presentations-of-Geometry-for-Computer-Graphics.pdf. [Last accessed on 2 Jul 2024].
35. Levoy M, Whitted T. The use of points as a display primitive. 2000. Available from: https://api.semanticscholar.org/
CorpusID:12672240. [Last accessed on 2 Jul 2024].
36. Botsch M, Kobbelt L, Pauly M, Alliez P, Levy B. Polygon mesh processing. A K Peters/CRC Press; 2010. Available from: http://
www.crcpress.com/product/isbn/9781568814261. [Last accessed on 2 Jul 2024].
37. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci
2016;374:20150202. DOI PubMed PMC
38. Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: Whitton MC, editor. Seminal graphics papers: pushing the
boundaries. New York: ACM; 2023. pp. 157-64. DOI
39. Edwards GJ, Taylor CJ, Cootes TF. Interpreting face images using active appearance models. In: Proceedings Third IEEE
International Conference on Automatic Face and Gesture Recognition; 1998 Apr 14-16; Nara, Japan. IEEE; 1998. pp. 300-5. DOI
40. Karamizadeh S, Abdullah SM, Manaf AA, Zamani M, Hooman A. An overview of principal component analysis. J Signal Inf
Process 2013;4:173-5. DOI
41. Liu X, Killeen BD, Sinha A, et al. Neighborhood normalization for robust geometric feature learning. In: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA. IEEE; 2021. pp. 13049-
58. DOI
42. Drenkow N, Sani N, Shpitser I, Unberath M. A systematic review of robustness in deep learning for computer vision: mind the gap?
arXiv. [Preprint.] Dec 1, 2021 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/2112.00639.
43. Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. Appl Math Sci 2004;57:B15. DOI
44. Salomon D. Curves and surfaces for computer graphics. New York: Springer. 2006. DOI
45. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw 1989;2:359-66.
DOI
46. Michalkiewicz M, Pontes JK, Jack D, Baktashmotlagh M, Eriksson A. Deep level sets: implicit surface representations for 3d shape
inference. arXiv. [Preprint.] Jan 21, 2019 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/1901.06802.
47. Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S. Deepsdf: learning continuous signed distance functions for shape
representation. arXiv. [Preprint.] Jan 16, 2019 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/1901.05103.
48. Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R. NeRF: representing scenes as neural radiance fields for

