Page 44 - Read Online
P. 44
Page 128 Ding et al. Art Int Surg 2024;4:109-38 https://dx.doi.org/10.20517/ais.2024.16
Funds. The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health.
Conflict of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2024.
REFERENCES
1. Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science - from concepts toward clinical translation. Med Image Anal
2022;76:102306. DOI PubMed PMC
2. Ding H, Zhang J, Kazanzides P, Wu JY, Unberath M. CaRTS: causality-driven robot tool segmentation from vision and kinematics
data. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention -
MICCAI 2022. Cham: Springer; 2022. pp. 387-98. DOI
3. Kenngott HG, Wagner M, Preukschas AA, Müller-Stich BP. [Intelligent operating room suite: from passive medical devices to the
self-thinking cognitive surgical assistant]. Chirurg 2016;87:1033-8. DOI PubMed
4. Killeen BD, Gao C, Oguine KJ, et al. An autonomous X-ray image acquisition and interpretation system for assisting percutaneous
pelvic fracture fixation. Int J Comput Assist Radiol Surg 2023;18:1201-8. DOI PubMed PMC
5. Gao C, Killeen BD, Hu Y, et al. Synthetic data accelerates the development of generalizable learning-based algorithms for X-ray
image analysis. Nat Mach Intell 2023;5:294-308. DOI PubMed PMC
6. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9. DOI PubMed PMC
7. Shu H, Liang R, Li Z, et al. Twin-S: a digital twin for skull base surgery. Int J Comput Assist Radiol Surg 2023;18:1077-84. DOI
PubMed PMC
8. Killeen BD, Winter J, Gu W, et al. Mixed reality interfaces for achieving desired views with robotic X-ray systems. Comput Methods
Biomech Biomed Eng Imaging Vis 2023;11:1130-5. DOI PubMed PMC
9. Killeen BD, Chaudhary S, Osgood G, Unberath M. Take a shot! Natural language control of intelligent robotic X-ray systems in surgery.
Int J Comput Assist Radiol Surg 2024;19:1165-73. DOI PubMed PMC
10. Kausch L, Thomas S, Kunze H, et al. C-arm positioning for standard projections during spinal implant placement. Med Image Anal
2022;81:102557. DOI PubMed
11. Killeen BD, Zhang H, Mangulabnan J, et al. Pelphix: surgical phase recognition from X-ray images in percutaneous pelvic fixation.
In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-mahmood T, Taylor R, editors. Medical Image
Computing and Computer Assisted Intervention - MICCAI 2023. Cham: Springer; 2023. pp. 133-43. DOI
12. Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review. Ann Surg
2021;273:684-93. DOI PubMed
13. Weede O, Dittrich F, Worn H, et al. Workflow analysis and surgical phase recognition in minimally invasive surgery. In: 2012 IEEE
International Conference on Robotics and Biomimetics (ROBIO); 2012 Dec 11-14; Guangzhou, China. IEEE; 2012. pp. 1080-74.
DOI
14. Kiyasseh D, Ma R, Haque TF, et al. A vision transformer for decoding surgeon activity from surgical videos. Nat Biomed Eng
2023;7:780-96. DOI PubMed PMC
15. Ban Y, Eckhoff JA, Ward TM, et al. Concept graph neural networks for surgical video understanding. IEEE Trans Med Imaging
2024;43:264-74. DOI PubMed
16. Czempiel T, Paschali M, Keicher M, et al. TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In:
Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L, editors. Medical Image
Computing and Computer Assisted Intervention - MICCAI 2020. Cham: Springer; 2020. pp. 343-52. DOI
17. Guédon ACP, Meij SEP, Osman KNMMH, et al. Deep learning for surgical phase recognition using endoscopic videos. Surg Endosc
2021;35:6150-7. DOI PubMed
18. Murali A, Alapatt D, Mascagni P, et al. Encoding surgical videos as latent spatiotemporal graphs for object and anatomy-driven

