Page 44 - Read Online
P. 44

Page 128                           Ding et al. Art Int Surg 2024;4:109-38  https://dx.doi.org/10.20517/ais.2024.16

               Funds. The content is solely the responsibility of the authors and does not necessarily represent the official
               views of the National Institutes of Health.

               Conflict of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science - from concepts toward clinical translation. Med Image Anal
                    2022;76:102306.  DOI  PubMed  PMC
               2.       Ding H, Zhang J, Kazanzides P, Wu JY, Unberath M. CaRTS: causality-driven robot tool segmentation from vision and kinematics
                    data. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention -
                    MICCAI 2022. Cham: Springer; 2022. pp. 387-98.  DOI
               3.       Kenngott HG, Wagner M, Preukschas AA, Müller-Stich BP. [Intelligent operating room suite: from passive medical devices to the
                    self-thinking cognitive surgical assistant]. Chirurg 2016;87:1033-8.  DOI  PubMed
               4.       Killeen BD, Gao C, Oguine KJ, et al. An autonomous X-ray image acquisition and interpretation system for assisting percutaneous
                    pelvic fracture fixation. Int J Comput Assist Radiol Surg 2023;18:1201-8.  DOI  PubMed  PMC
               5.       Gao C, Killeen BD, Hu Y, et al. Synthetic data accelerates the development of generalizable learning-based algorithms for X-ray
                    image analysis. Nat Mach Intell 2023;5:294-308.  DOI  PubMed  PMC
               6.       Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
                    surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.  DOI  PubMed  PMC
               7.       Shu H, Liang R, Li Z, et al. Twin-S: a digital twin for skull base surgery. Int J Comput Assist Radiol Surg 2023;18:1077-84.  DOI
                    PubMed  PMC
               8.       Killeen BD, Winter J, Gu W, et al. Mixed reality interfaces for achieving desired views with robotic X-ray systems. Comput Methods
                    Biomech Biomed Eng Imaging Vis 2023;11:1130-5.  DOI  PubMed  PMC
               9.       Killeen BD, Chaudhary S, Osgood G, Unberath M. Take a shot! Natural language control of intelligent robotic X-ray systems in surgery.
                    Int J Comput Assist Radiol Surg 2024;19:1165-73.  DOI  PubMed PMC
               10.       Kausch L, Thomas S, Kunze H, et al. C-arm positioning for standard projections during spinal implant placement. Med Image Anal
                    2022;81:102557.  DOI  PubMed
               11.       Killeen BD, Zhang H, Mangulabnan J, et al. Pelphix: surgical phase recognition from X-ray images in percutaneous pelvic fixation.
                    In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-mahmood T, Taylor R, editors. Medical Image
                    Computing and Computer Assisted Intervention - MICCAI 2023. Cham: Springer; 2023. pp. 133-43.  DOI
               12.       Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review. Ann Surg
                    2021;273:684-93.  DOI  PubMed
               13.       Weede O, Dittrich F, Worn H, et al. Workflow analysis and surgical phase recognition in minimally invasive surgery. In: 2012 IEEE
                    International Conference on Robotics and Biomimetics (ROBIO); 2012 Dec 11-14; Guangzhou, China. IEEE; 2012. pp. 1080-74.
                    DOI
               14.       Kiyasseh D, Ma R, Haque TF, et al. A vision transformer for decoding surgeon activity from surgical videos. Nat Biomed Eng
                    2023;7:780-96.  DOI  PubMed  PMC
               15.       Ban Y, Eckhoff JA, Ward TM, et al. Concept graph neural networks for surgical video understanding. IEEE Trans Med Imaging
                    2024;43:264-74.  DOI  PubMed
               16.       Czempiel T, Paschali M, Keicher M, et al. TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In:
                    Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L, editors. Medical Image
                    Computing and Computer Assisted Intervention - MICCAI 2020. Cham: Springer; 2020. pp. 343-52.  DOI
               17.       Guédon ACP, Meij SEP, Osman KNMMH, et al. Deep learning for surgical phase recognition using endoscopic videos. Surg Endosc
                    2021;35:6150-7.  DOI  PubMed
               18.       Murali A, Alapatt D, Mascagni P, et al. Encoding surgical videos as latent spatiotemporal graphs for object and anatomy-driven
   39   40   41   42   43   44   45   46   47   48   49