Page 47 - Read Online
P. 47
Ding et al. Art Int Surg 2024;4:109-38 https://dx.doi.org/10.20517/ais.2024.16 Page 131
76. Hein J, Cavalcanti N, Suter D, et al. Next-generation surgical navigation: marker-less multi-view 6dof pose estimation of surgical
instruments. arXiv. [Preprint.] Dec 22, 2023 [accessed 2024 Jul 2]. Available from: https://arxiv.org/abs/2305.03535.
77. Hasan MK, Calvet L, Rabbani N, Bartoli A. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional
neural networks and algebraic geometry. Med Image Anal 2021;70:101994. DOI PubMed
78. 3dStool. Available from: https://github.com/SpyrosSou/3dStool. [Last accessed on 2 Jul 2024].
79. Greene N, Luo W, Kazanzides P. dvpose: automated data collection and dataset for 6d pose estimation of robotic surgical
instruments. In: 2023 International Symposium on Medical Robotics (ISMR); 2023 Apr 19-21; Atlanta, GA, USA. IEEE; 2023. pp.
1-7. DOI
80. Fisher R. Edinburgh simulated surgical tools dataset (RGBD). 2022. Available from: https://groups.inf.ed.ac.uk/vision/DATASETS/
SURGICALTOOLS/. [Last accessed on 2 Jul 2024].
81. 6-dof pose estimation of surgical instruments. 2022. Available from: https://www.kaggle.com/datasets/juanantoniobarragan/6-dof-
pose-estimation-of-surgical-instruments. [Last accessed on 2 Jul 2024].
82. Munawar A, Wu JY, Fischer GS, Taylor RH, Kazanzides P. Open simulation environment for learning and practice of robot-assisted
surgical suturing. IEEE Robot Autom Lett 2022;7:3843-50. DOI
83. Wang R, Ktistakis S, Zhang S, Meboldt M, Lohmeyer Q. POV-surgery: a dataset for egocentric hand and tool pose estimation during
surgical activities. In: Greenspan H, et al., editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023.
Cham: Springer; 2023. pp. 440-50. DOI
84. Kügler D, Sehring J, Stefanov A, et al. i3PosNet: instrument pose estimation from X-ray in temporal bone surgery. Int J Comput
Assist Radiol Surg 2020;15:1137-45. DOI PubMed PMC
85. Zhang J, Hu J. Image segmentation based on 2d otsu method with histogram analysis. In: 2008 International Conference on Computer
Science and Software Engineering; 2008 Dec 12-14; Wuhan, China. IEEE; 2008. pp. 105-8. DOI
86. Pham DL, Prince JL. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities.
Pattern Recognit Lett 1999;20:57-68. DOI
87. Lin C, Chen C. Image segmentation based on edge detection and region growing for thinprep-cervical smear. Int J Patt Recogn Artif
Intell 2010;24:1061-89. DOI
88. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05); 2005 Jun 20-25; San Diego, CA, USA. IEEE; 2005. pp. 886-93. DOI
89. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE
Trans Pattern Anal Mach Intell 2010;32:1627-45. DOI PubMed
90. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. CVPR 2001; 2001 Dec 8-14; Kauai, HI, USA. IEEE; 2001. p. 1.
DOI
91. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE; 2015. pp. 3431-40. DOI
92. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J,
Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham: Springer;
2015. pp. 234-41. DOI
93. Chen L, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018. Cham: Springer; 2018. pp.
833-51. DOI
94. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. pp. 2881-90. DOI
95. Seenivasan L, Mitheran S, Islam M, Ren H. Global-reasoned multi-task learning model for surgical scene understanding. IEEE Robot
Autom Lett 2022;7:3858-65. DOI
96. Girshick R. Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 7-13; Santiago, Chile. IEEE;
2015. pp. 1440-8. DOI
97. Ren S, He K, Girshick R, Sun J. Faster r-cnn: towards real-time object detection with region proposal networks. Available from:
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html. [Last accessed on 2 Jul 2024].
98. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014
IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, OH, USA. IEEE; 2014. pp. 580-7. DOI
99. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA. IEEE; 2016. pp. 779-88. DOI
100. Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer
Vision - ECCV 2016. Cham: Springer; 2016. pp. 21-37. DOI
101. Lu X, Li B, Yue Y, Li Q, Yan J. Grid R-CNN. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR); 2019 Jun 15-20; Long Beach, CA, USA. IEEE; 2019. pp. 7363-72. DOI
102. Zhang H, Chang H, Ma B, Wang N, Chen X. Dynamic R-CNN: towards high quality object detection via dynamic training. In:
Vedaldi A, Bischof H, Brox T, Frahm J, editors. Computer Vision - ECCV 2020. Cham: Springer; 2020. pp. 260-75. DOI
103. Wu Y, Chen Y, Yuan L, et al. Rethinking classification and localization for object detection. In: 2020 IEEE/CVF Conference on

