Page 53 - Read Online
P. 53
Ding et al. Art Int Surg 2024;4:109-38 https://dx.doi.org/10.20517/ais.2024.16 Page 137
246. Zhou H, Jayender J. EMDQ-SLAM: real-time high-resolution reconstruction of soft tissue surface from stereo laparoscopy videos.
Med Image Comput Comput Assist Interv 2021;12904:331-40. DOI PubMed PMC
247. Wei G, Feng G, Li H, Chen T, Shi W, Jiang Z. A novel slam method for laparoscopic scene reconstruction with feature patch
tracking. In: 2020 International Conference on Virtual Reality and Visualization (ICVRV); 2020 Nov 13-14; Recife, Brazil. IEEE;
2020. pp. 287-91. DOI
248. Wang Y, Long Y, Fan SH, Dou Q. Neural rendering for stereo 3D reconstruction of deformable tissues in robotic surgery. In: Wang
L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2022.
Cham: Springer; 2022. pp. 431-41. DOI
249. Zha R, Cheng X, Li H, Harandi M, Ge Z. EndoSurf: neural surface reconstruction of deformable tissues with stereo endoscope
videos. In: Greenspan H, et al., editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. Cham:
Springer; 2023. pp. 13-23. DOI
250. Newcombe RA, Fox D, Seitz SM. Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston, MA, USA. IEEE; 2015. pp. 343-52. DOI
251. Li Y, Richter F, Lu J, et al. SuPer: a surgical perception framework for endoscopic tissue manipulation with surgical robotics. IEEE
Robot Autom Lett 2020;5:2294-301. DOI
252. Mangulabnan JE, Soberanis-Mukul RD, Teufel T, et al. An endoscopic chisel: intraoperative imaging carves 3D anatomical models.
Int J Comput Assist Radiol Surg 2024;19:1359-66. DOI
253. Nguyen KT, Tozzi F, Rashidian N, Willaert W, Vankerschaver J, De Neve W. Towards abdominal 3-D scene rendering from
laparoscopy surgical videos using NeRFs. In: Cao X, Xu X, Rekik I, Cui Z, Ouyang X, editors. Machine Learning in Medical
Imaging. Cham: Springer; 2024. pp. 83-93. DOI
254. Hein J, Seibold M, Bogo F, et al. Towards markerless surgical tool and hand pose estimation. Int J Comput Assist Radiol Surg
2021;16:799-808. DOI PubMed PMC
255. Félix I, Raposo C, Antunes M, Rodrigues P, Barreto JP. Towards markerless computer-aided surgery combining deep segmentation
and geometric pose estimation: application in total knee arthroplasty. Comput Methods Biomech Biomed Eng Imaging Vis
2021;9:271-8. DOI
256. Li Z, Shu H, Liang R, et al. TAToo: vision-based joint tracking of anatomy and tool for skull-base surgery. Int J Comput Assist
Radiol Surg 2023;18:1303-10. DOI
257. Murphy-Chutorian E, Trivedi MM. Head pose estimation in computer vision: a survey. IEEE Trans Pattern Anal Mach Intell
2009;31:607-26. DOI PubMed
258. Toshev A, Szegedy C. Deeppose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision
and Pattern Recognition; 2014 Jun 23-28; Columbus, OH, USA. IEEE; 2014. pp. 1653-60. DOI
259. Allan M, Chang P, Ourselin S, et al. Image based surgical instrument pose estimation with multi-class labelling and optical flow. In:
Navab N, Hornegger J, Wells WM, Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention -- MICCAI
2015. Cham: Springer; 2015. pp. 331-8. DOI
260. Peng S, Liu Y, Huang Q, Zhou X, Bao H. Pvnet: pixel-wise voting network for 6DoF pose estimation. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, CA, USA. IEEE; 2019. pp. 4556-
65. DOI
261. Do TT, Cai M, Pham T, Reid I. Deep-6dpose: Recovering 6d object pose from a single rgb image. arXiv. [Preprint.] Feb 28, 2018
[accessed 2024 Jul 3]. Available from: https://arxiv.org/abs/1802.10367.
262. He Z, Feng W, Zhao X, Lv Y. 6D pose estimation of objects: recent technologies and challenges. Appl Sci 2021;11:228. DOI
263. Marullo G, Tanzi L, Piazzolla P, Vezzetti E. 6D object position estimation from 2D images: a literature review. Multimed Tools Appl
2023;82:24605-43. DOI
264. Hasson Y, Tekin B, Bogo F, Laptev I, Pollefeys M, Schmid C. Leveraging photometric consistency over time for sparsely supervised
hand-object reconstruction. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13-19;
Seattle, WA, USA. IEEE; 2020. pp. 568-77. DOI
265. Kadkhodamohammadi A, Gangi A, de Mathelin M, Padoy N. Articulated clinician detection using 3D pictorial structures on RGB-D
data. Med Image Anal 2017;35:215-24. DOI PubMed
266. Padoy N. Machine and deep learning for workflow recognition during surgery. Minim Invasive Ther Allied Technol 2019;28:82-90.
DOI PubMed
267. Kadkhodamohammadi A, Gangi A, de Mathelin M, Padoy N. A multi-view rgb-d approach for human pose estimation in operating
rooms. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV); 2017 Mar 24-31; Santa Rosa, CA, USA.
IEEE; 2017. pp. 363-72. DOI
268. Long Y, Wei W, Huang T, Wang Y, Dou Q. Human-in-the-loop embodied intelligence with interactive simulation environment for
surgical robot learning. IEEE Robot Autom Lett 2023;8:4441-8. DOI
269. Killeen BD, Cho SM, Armand M, Taylor RH, Unberath M. In silico simulation: a key enabling technology for next-generation
intelligent surgical systems. Prog Biomed Eng 2023;5:032001. DOI
270. Munawar A, Wang Y, Gondokaryono R, Fischer GS. A real-time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS); 2019 Nov 3-8; Macau, China. IEEE; 2019. pp. 1875-82. DOI

