Page 55 - Read Online
P. 55
Shapey et al. Art Int Surg 2023;3:1-13 https://dx.doi.org/10.20517/ais.2022.31 Page 13
surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9. DOI PubMed PMC
32. Callery MP, Pratt WB, Kent TS, Chaikof EL, Vollmer CM Jr. A prospectively validated clinical risk score accurately predicts
pancreatic fistula after pancreatoduodenectomy. J Am Coll Surg 2013;216:1-14. DOI PubMed
33. Mungroop TH, van Rijssen LB, van Klaveren D, et al. Alternative fistula risk score for pancreatoduodenectomy (a-FRS): design and
international external validation. Ann Surg 2019;269:937-43. DOI
34. Roberts KJ, Sutcliffe RP, Marudanayagam R, et al. Scoring system to predict pancreatic fistula after pancreaticoduodenectomy: a UK
multicenter study. Ann Surg 2015;261:1191-7. DOI PubMed
35. Shi Y, Gao F, Qi Y, et al. Computed tomography-adjusted fistula risk score for predicting clinically relevant postoperative pancreatic
fistula after pancreatoduodenectomy: training and external validation of model upgrade. EBioMedicine 2020;62:103096. DOI
PubMed PMC
36. Tang B, Lin Z, Ma Y, et al. A modified alternative fistula risk score (a-FRS) obtained from the computed tomography enhancement
pattern of the pancreatic parenchyma predicts pancreatic fistula after pancreatoduodenectomy. HPB 2021;23:1759-66. DOI PubMed
37. Hayashi H, Amaya K, Fujiwara Y, et al. Comparison of three fistula risk scores after pancreatoduodenectomy: A single-institution
retrospective study. Asian J Surg 2021;44:143-6. DOI PubMed
38. Kambakamba P, Mannil M, Herrera PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on
preoperative, non-contrast-enhanced CT: a proof-of-principle study. Surgery 2020;167:448-54. DOI PubMed
39. Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to
predict postoperative outcomes after pancreatoduodenectomy. Updates Surg 2022;74:235-43. DOI PubMed
40. Gichoya JW, Banerjee I, Bhimireddy AR, et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit
Health 2022;4:e406-14. DOI PubMed PMC
41. Mu W, Liu C, Gao F, et al. Prediction of clinically relevant pancreatico-enteric anastomotic fistulas after pancreatoduodenectomy
using deep learning of preoperative computed tomography. Theranostics 2020;10:9779-88. DOI PubMed PMC
42. Chen S, Li J, Wang D, Fung H, Wong L, Zhao L. The hepatitis B epidemic in China should receive more attention. Lancet
2018;391:1572. DOI PubMed
43. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol 2019;19:64.
DOI
44. Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence.
World J Gastroenterol 2020;26:4453-64. DOI PubMed PMC
45. Cos H, Li D, Williams G, et al. Predicting outcomes in patients undergoing pancreatectomy using wearable technology and machine
learning: prospective cohort study. J Med Internet Res 2021;23:e23595. DOI PubMed PMC
46. Shi HY, Lee KT, Wang JJ, Sun DP, Lee HH, Chiu CC. Artificial neural network model for predicting 5-year mortality after surgery for
hepatocellular carcinoma: a nationwide study. J Gastrointest Surg 2012;16:2126-31. DOI PubMed
47. Qiao G, Li J, Huang A, Yan Z, Lau WY, Shen F. Artificial neural networking model for the prediction of post-hepatectomy survival of
patients with early hepatocellular carcinoma. J Gastroenterol Hepatol 2014;29:2014-20. DOI PubMed
48. Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine? Ann
Intern Med 2020;172:59-60. DOI PubMed
49. Huang Y, Chen H, Zeng Y, Liu Z, Ma H, Liu J. Development and validation of a machine learning prognostic model for hepatocellular
carcinoma recurrence after surgical resection. Front Oncol 2020;10:593741. DOI PubMed PMC
50. Mai R, Lu H, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in
patients with hepatocellular carcinoma. Surgery 2020;168:643-52. DOI
51. Shapey IM, Malik HZ, de Liguori Carino N. Data driven decision-making for older patients with hepatocellular carcinoma. Eur J Surg
Oncol 2021;47:576-82. DOI PubMed
52. Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet 2019;393:1577-9. DOI PubMed
53. Shen Z, Chen H, Wang W, et al. Machine learning algorithms as early diagnostic tools for pancreatic fistula following
pancreaticoduodenectomy and guide drain removal: A retrospective cohort study. Int J Surg 2022;102:106638. DOI PubMed
54. Pfitzner B, Chromik J, Brabender R, et al. Perioperative risk assessment in pancreatic surgery using machine learning. In 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2021.pp. 2211-4. DOI