Page 55 - Read Online
P. 55

Shapey et al. Art Int Surg 2023;3:1-13  https://dx.doi.org/10.20517/ais.2022.31      Page 13

                   surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.  DOI  PubMed  PMC
               32.      Callery MP, Pratt WB, Kent TS, Chaikof EL, Vollmer CM Jr. A prospectively validated clinical risk score accurately predicts
                   pancreatic fistula after pancreatoduodenectomy. J Am Coll Surg 2013;216:1-14.  DOI  PubMed
               33.      Mungroop TH, van Rijssen LB, van Klaveren D, et al. Alternative fistula risk score for pancreatoduodenectomy (a-FRS): design and
                   international external validation. Ann Surg 2019;269:937-43.  DOI
               34.      Roberts KJ, Sutcliffe RP, Marudanayagam R, et al. Scoring system to predict pancreatic fistula after pancreaticoduodenectomy: a UK
                   multicenter study. Ann Surg 2015;261:1191-7.  DOI  PubMed
               35.      Shi Y, Gao F, Qi Y, et al. Computed tomography-adjusted fistula risk score for predicting clinically relevant postoperative pancreatic
                   fistula after pancreatoduodenectomy: training and external validation of model upgrade. EBioMedicine 2020;62:103096.  DOI
                   PubMed  PMC
               36.      Tang B, Lin Z, Ma Y, et al. A modified alternative fistula risk score (a-FRS) obtained from the computed tomography enhancement
                   pattern of the pancreatic parenchyma predicts pancreatic fistula after pancreatoduodenectomy. HPB 2021;23:1759-66.  DOI  PubMed
               37.      Hayashi H, Amaya K, Fujiwara Y, et al. Comparison of three fistula risk scores after pancreatoduodenectomy: A single-institution
                   retrospective study. Asian J Surg 2021;44:143-6.  DOI  PubMed
               38.      Kambakamba P, Mannil M, Herrera PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on
                   preoperative, non-contrast-enhanced CT: a proof-of-principle study. Surgery 2020;167:448-54.  DOI  PubMed
               39.      Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to
                   predict postoperative outcomes after pancreatoduodenectomy. Updates Surg 2022;74:235-43.  DOI  PubMed
               40.      Gichoya JW, Banerjee I, Bhimireddy AR, et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit
                   Health 2022;4:e406-14.  DOI  PubMed  PMC
               41.      Mu W, Liu C, Gao F, et al. Prediction of clinically relevant pancreatico-enteric anastomotic fistulas after pancreatoduodenectomy
                   using deep learning of preoperative computed tomography. Theranostics 2020;10:9779-88.  DOI  PubMed  PMC
               42.      Chen S, Li J, Wang D, Fung H, Wong L, Zhao L. The hepatitis B epidemic in China should receive more attention. Lancet
                   2018;391:1572.  DOI  PubMed
               43.      Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol 2019;19:64.
                   DOI
               44.      Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence.
                   World J Gastroenterol 2020;26:4453-64.  DOI  PubMed  PMC
               45.      Cos H, Li D, Williams G, et al. Predicting outcomes in patients undergoing pancreatectomy using wearable technology and machine
                   learning: prospective cohort study. J Med Internet Res 2021;23:e23595.  DOI  PubMed  PMC
               46.      Shi HY, Lee KT, Wang JJ, Sun DP, Lee HH, Chiu CC. Artificial neural network model for predicting 5-year mortality after surgery for
                   hepatocellular carcinoma: a nationwide study. J Gastrointest Surg 2012;16:2126-31.  DOI  PubMed
               47.      Qiao G, Li J, Huang A, Yan Z, Lau WY, Shen F. Artificial neural networking model for the prediction of post-hepatectomy survival of
                   patients with early hepatocellular carcinoma. J Gastroenterol Hepatol 2014;29:2014-20.  DOI  PubMed
               48.      Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine? Ann
                   Intern Med 2020;172:59-60.  DOI  PubMed
               49.      Huang Y, Chen H, Zeng Y, Liu Z, Ma H, Liu J. Development and validation of a machine learning prognostic model for hepatocellular
                   carcinoma recurrence after surgical resection. Front Oncol 2020;10:593741.  DOI  PubMed  PMC
               50.      Mai R, Lu H, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in
                   patients with hepatocellular carcinoma. Surgery 2020;168:643-52.  DOI
               51.      Shapey IM, Malik HZ, de Liguori Carino N. Data driven decision-making for older patients with hepatocellular carcinoma. Eur J Surg
                   Oncol 2021;47:576-82.  DOI  PubMed
               52.      Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet 2019;393:1577-9.  DOI  PubMed
               53.      Shen  Z,  Chen  H,  Wang  W,  et  al.  Machine  learning  algorithms  as  early  diagnostic  tools  for  pancreatic  fistula  following
                   pancreaticoduodenectomy and guide drain removal: A retrospective cohort study. Int J Surg 2022;102:106638.  DOI  PubMed
               54.      Pfitzner B, Chromik J, Brabender R, et al. Perioperative risk assessment in pancreatic surgery using machine learning. In 2021 43rd
                   Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2021.pp. 2211-4.  DOI
   50   51   52   53   54   55   56   57   58   59   60