Page 138 - Read Online
P. 138

De Robertis et al. Art Int Surg 2023;3:166-79  https://dx.doi.org/10.20517/ais.2023.18                                                 Page 178

                   AISP (Italian Association for the Study of the Pancreas) registry. Am J Gastroenterol 2019;114:665-70.  DOI
               57.      Chhoda A, Vodusek Z, Wattamwar K, et al. Late-stage pancreatic cancer detected during high-risk individual surveillance: a
                   systematic review and meta-analysis. Gastroenterology 2022;162:786-98.  DOI
               58.      Chu LC, Park S, Kawamoto S, et al. Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from
                   normal pancreatic tissue. AJR Am J Roentgenol 2019;213:349-57.  DOI
               59.      Qureshi TA, Gaddam S, Wachsman AM, et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of
                   pre-diagnostic computed tomography images. Cancer Biomark 2022;33:211-7.  DOI  PubMed  PMC
               60.      Javed S, Qureshi TA, Gaddam S, et al. Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed
                   tomography images. Front Oncol 2022;12:1007990.  DOI  PubMed  PMC
               61.      Mukherjee S, Patra A, Khasawneh H, et al. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic
                   computed tomography scans at a substantial lead time before clinical diagnosis. Gastroenterology 2022;163:1435-46.e3.  DOI
               62.      Jeon SK, Kim JH, Yoo J, Kim JE, Park SJ, Han JK. Assessment of malignant potential in intraductal papillary mucinous neoplasms of
                   the pancreas using MR findings and texture analysis. Eur Radiol 2021;31:3394-404.  DOI
               63.      Chakraborty J, Midya A, Gazit L, et al. CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas.
                   Med Phys 2018;45:5019-29.  DOI  PubMed  PMC
               64.      Permuth JB, Choi J, Balarunathan Y, et al. Combining radiomic features with a miRNA classifier may improve prediction of malignant
                   pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 2016;7:85785-97.  DOI  PubMed  PMC
               65.      Zhang H, Meng Y, Li Q, et al. Two nomograms for differentiating mass-forming chronic pancreatitis from pancreatic ductal
                   adenocarcinoma in patients with chronic pancreatitis. Eur Radiol 2022;32:6336-47.  DOI
               66.      Wei R, Lin K, Yan W, et al. Computer-aided diagnosis of pancreas serous cystic neoplasms: a radiomics method on preoperative
                   MDCT images. Technol Cancer Res Treat 2019;18:1533033818824339.  DOI  PubMed  PMC
               67.      Chang N, Cui L, Luo Y, Chang Z, Yu B, Liu Z. Development and multicenter validation of a CT-based radiomics signature for
                   discriminating histological grades of pancreatic ductal adenocarcinoma. Quant Imaging Med Surg 2020;10:692-702.  DOI  PubMed
                   PMC
               68.      Tikhonova VS, Karmazanovsky GG, Kondratyev EV, et al. Radiomics model-based algorithm for preoperative prediction of
                   pancreatic ductal adenocarcinoma grade. Eur Radiol 2023;33:1152-61.  DOI  PubMed
               69.      Gu D, Hu Y, Ding H, et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol
                   2019;29:6880-90.  DOI
               70.      De Robertis R, Maris B, Cardobi N, et al. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine
                   tumors? Eur Radiol 2018;28:2582-91.  DOI
               71.      Mori M, Palumbo D, Muffatti F, et al. Prediction of the characteristics of aggressiveness of pancreatic neuroendocrine neoplasms
                   (PanNENs) based on CT radiomic features. Eur Radiol 2023;33:4412-21.  DOI
               72.      Salinas-Miranda E, Healy GM, Grünwald B, et al. Correlation of transcriptional subtypes with a validated CT radiomics score in
                   resectable pancreatic ductal adenocarcinoma. Eur Radiol 2022;32:6712-22.  DOI
               73.      Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016;531:47-52.
                   DOI  PubMed
               74.      Rigiroli F, Hoye J, Lerebours R, et al. CT radiomic features of superior mesenteric artery involvement in pancreatic ductal
                   adenocarcinoma: a pilot study. Radiology 2021;301:610-22.  DOI  PubMed  PMC
               75.      Bian Y, Guo S, Jiang H, et al. Relationship between radiomics and risk of lymph node metastasis in pancreatic ductal adenocarcinoma.
                   Pancreas 2019;48:1195-203.  DOI  PubMed  PMC
               76.      De Robertis R, Geraci L, Tomaiuolo L, et al. Liver metastases in pancreatic ductal adenocarcinoma: a predictive model based on CT
                   texture analysis. Radiol Med 2022;127:1079-84.  DOI
               77.      Tang TY, Li X, Zhang Q, et al. Development of a novel multiparametric MRI radiomic nomogram for preoperative evaluation of early
                   recurrence in resectable pancreatic cancer. J Magn Reson Imaging 2020;52:231-45.  DOI  PubMed  PMC
               78.      De Robertis R, Tomaiuolo L, Pasquazzo F, et al. Correlation between ADC histogram-derived metrics and the time to metastases in
                   resectable pancreatic adenocarcinoma. Cancers 2022;14:6050.  DOI  PubMed  PMC
               79.      Kulkarni A, Carrion-Martinez I, Jiang NN, et al. Hypovascular pancreas head adenocarcinoma: CT texture analysis for assessment of
                   resection margin status and high-risk features. Eur Radiol 2020;30:2853-60.  DOI
               80.      De Robertis R, Beleù A, Cardobi N, et al. Correlation of MR features and histogram-derived parameters with aggressiveness and
                   outcomes after resection in pancreatic ductal adenocarcinoma. Abdom Radiol 2020;45:3809-18.  DOI
               81.      Kim HS, Kim YJ, Kim KG, Park JS. Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer.
                   Sci Rep 2019;9:17389.  DOI  PubMed  PMC
               82.      Xie T, Wang X, Li M, Tong T, Yu X, Zhou Z. Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model
                   and TNM staging for survival estimation after curative resection. Eur Radiol 2020;30:2513-24.  DOI
               83.      Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M. CT texture analysis of pancreatic cancer. Eur Radiol 2019;29:1067-73.
                   DOI  PubMed
               84.      Healy  GM,  Salinas-Miranda  E,  Jain  R,  et  al.  Pre-operative  radiomics  model  for  prognostication  in  resectable  pancreatic
                   adenocarcinoma with external validation. Eur Radiol 2022;32:2492-505.  DOI
               85.      Borhani AA, Dewan R, Furlan A, et al. Assessment of response to neoadjuvant therapy using CT texture analysis in patients with
   133   134   135   136   137   138   139   140   141   142   143