Page 137 - Read Online
P. 137

Page 177                                                  De Robertis et al. Art Int Surg 2023;3:166-79  https://dx.doi.org/10.20517/ais.2023.18

                   carcinoma undergoing drug-eluting bead transarterial chemoembolization (DEB-TACE) using biphasic contrast-enhanced ct image
                   data: correlation with liver perfusion CT. Acad Radiol 2017;24:1352-63.  DOI
               28.      Wu LF, Rao SX, Xu PJ, et al. Pre-TACE kurtosis of ADC total  derived from histogram analysis for diffusion-weighted imaging is the
                   best independent predictor of prognosis in hepatocellular carcinoma. Eur Radiol 2019;29:213-23.  DOI
               29.      Shaghaghi M, Aliyari Ghasabeh M, Ameli S, et al. Post-TACE changes in ADC histogram predict overall and transplant-free survival
                   in patients with well-defined HCC: a retrospective cohort with up to 10 years follow-up. Eur Radiol 2021;31:1378-90.  DOI
               30.      Yang X, Yuan C, Zhang Y, Li K, Wang Z. Predicting hepatocellular carcinoma early recurrence after ablation based on magnetic
                   resonance imaging radiomics nomogram. Medicine 2022;101:e32584.  DOI  PubMed  PMC
               31.      Fiz F, Jayakody Arachchige VS, Gionso M, et al. Radiomics of biliary tumors: a systematic review of current evidence. Diagnostics
                   2022;12:826.  DOI  PubMed  PMC
               32.      Liu X, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular
                   cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning? Eur Radiol
                   2021;31:244-55.  DOI
               33.      Zhou C, Wang Y, Ma L, Qian X, Yang C, Zeng M. Combined hepatocellular carcinoma-cholangiocarcinoma: MRI features correlated
                   with tumor biomarkers and prognosis. Eur Radiol 2022;32:78-88.  DOI
               34.      Ji GW, Zhu FP, Zhang YD, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic
                   cholangiocarcinoma. Eur Radiol 2019;29:3725-35.  DOI
               35.      Chu H, Liu Z, Liang W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic
                   cholangiocarcinoma. Eur Radiol 2021;31:2368-76.  DOI
               36.      Qin H, Hu X, Zhang J, et al. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative
                   resection. Liver Int 2021;41:837-50.  DOI
               37.      Groot  Koerkamp  B,  Wiggers  JK,  Allen  PJ,  et  al.  American  joint  committee  on  cancer  staging  for  resected  perihilar
                   cholangiocarcinoma: a comparison of the 6th and 7th editions. HPB 2014;16:1074-82.  DOI  PubMed  PMC
               38.      Jarnagin WR, Fong Y, DeMatteo RP, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann
                   Surg 2001;234:507-19.  DOI  PubMed  PMC
               39.      Gazzaniga GM, Faggioni A, Filauro M. Surgical treatment of proximal bile duct tumors. Int Surg 1985;70:45-8.  PubMed
               40.      Park HJ, Park B, Park SY, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma
                   based on clinical, radiologic, and radiomics features. Eur Radiol 2021;31:8638-48.  DOI
               41.      Zhang J, Wu Z, Zhao J, et al. Intrahepatic cholangiocarcinoma: MRI texture signature as predictive biomarkers of immunophenotyping
                   and survival. Eur Radiol 2021;31:3661-72.  DOI
               42.      Mosconi C, Cucchetti A, Bruno A, et al. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best
                   respond to radioembolisation. Eur Radiol 2020;30:4534-44.  DOI
               43.      Fiz F, Viganò L, Gennaro N, et al. Radiomics of liver metastases: a systematic review. Cancers 2020;12:2881.  DOI  PubMed  PMC
               44.      Wesdorp NJ, van Goor VJ, Kemna R, et al. Advanced image analytics predicting clinical outcomes in patients with colorectal liver
                   metastases: a systematic review of the literature. Surg Oncol 2021;38:101578.  DOI
               45.      Jia LL, Zhao JX, Zhao LP, Tian JH, Huang G. Current status and quality of radiomic studies for predicting KRAS mutations in
                   colorectal cancer patients: a systematic review and meta-analysis. Eur J Radiol 2023;158:110640.  DOI  PubMed
               46.      Kelahan LC, Kim D, Soliman M, et al. Role of hepatic metastatic lesion size on inter-reader reproducibility of CT-based radiomics
                   features. Eur Radiol 2022;32:4025-33.  DOI
               47.      Ahn SJ, Kim JH, Park SJ, Han JK. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver
                   metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 2016;85:1867-74.  DOI  PubMed
               48.      Dercle L, Lu L, Schwartz LH, et al. Radiomics response signature for identification of metastatic colorectal cancer sensitive to
                   therapies targeting EGFR pathway. J Natl Cancer Inst 2020;112:902-12.  DOI  PubMed  PMC
               49.      Dohan A, Gallix B, Guiu B, et al. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in
                   patients with colorectal cancer treated with FOLFIRI and bevacizumab. Gut 2020;69:531-9.  DOI
               50.      Creasy JM, Midya A, Chakraborty J, et al. Quantitative imaging features of pretreatment CT predict volumetric response to
                   chemotherapy in patients with colorectal liver metastases. Eur Radiol 2019;29:458-67.  DOI  PubMed  PMC
               51.      Abunahel BM, Pontre B, Kumar H, Petrov MS. Pancreas image mining: a systematic review of radiomics. Eur Radiol 2021;31:3447-
                   67.  DOI  PubMed
               52.      Gao Y, Cheng S, Zhu L, et al. A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity
                   markers or statistical tricks? Eur Radiol 2022;32:8443-52.  DOI  PubMed
               53.      Staal FCR, Aalbersberg EA, van der Velden D, et al. GEP-NET radiomics: a systematic review and radiomics quality score
                   assessment. Eur Radiol 2022;32:7278-94.  DOI
               54.      Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated
                   recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020;69:7-17.  DOI  PubMed
                   PMC
               55.      Signoretti M, Bruno MJ, Zerboni G, Poley JW, Delle Fave G, Capurso G. Results of surveillance in individuals at high-risk of
                   pancreatic cancer: a systematic review and meta-analysis. United Eur Gastroent J 2018;6:489-99.  DOI  PubMed  PMC
               56.      Paiella S, Capurso G, Cavestro GM, et al. Results of first-round of surveillance in individuals at high-risk of pancreatic cancer from the
   132   133   134   135   136   137   138   139   140   141   142