Page 136 - Read Online
P. 136
De Robertis et al. Art Int Surg 2023;3:166-79 https://dx.doi.org/10.20517/ais.2023.18 Page 176
Copyright
© The Author(s) 2023.
REFERENCES
1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-77. DOI
PubMed PMC
2. Henry T, Sun R, Lerousseau M, et al. Investigation of radiomics based intra-patient inter-tumor heterogeneity and the impact of tumor
subsampling strategies. Sci Rep 2022;12:17244. DOI PubMed PMC
3. Varghese BA, Cen SY, Hwang DH, Duddalwar VA. Texture analysis of imaging: what radiologists need to know. AJR Am J
Roentgenol 2019;212:520-8. DOI PubMed
4. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin
Oncol 2017;14:749-62. DOI
5. Spadarella G, Stanzione A, Akinci D’Antonoli T, et al. Systematic review of the radiomics quality score applications: an EuSoMII
radiomics auditing group initiative. Eur Radiol 2023;33:1884-94. DOI PubMed PMC
6. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by
the American Association for the study of liver diseases. Hepatology 2018;68:723-50. DOI
7. European Association for Study of Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical
practice guidelines: management of hepatocellular carcinoma. Eur J Cancer 2012;48:599-641. DOI PubMed
8. Singal A, Volk ML, Waljee A, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients
with cirrhosis. Aliment Pharmacol Ther 2009;30:37-47. DOI PubMed PMC
9. Yao Z, Dong Y, Wu G, et al. Preoperative diagnosis and prediction of hepatocellular carcinoma: radiomics analysis based on multi-
modal ultrasound images. BMC Cancer 2018;18:1089. DOI PubMed PMC
10. Harding-Theobald E, Louissaint J, Maraj B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular
carcinoma. Aliment Pharmacol Ther 2021;54:890-901. DOI PubMed PMC
11. Dankerl P, Cavallaro A, Tsymbal A, et al. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions
in CT scans. Acad Radiol 2013;20:1526-34. DOI PubMed
12. Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic
patients with indeterminate liver nodules. Eur Radiol 2020;30:558-70. DOI
13. Laino ME, Viganò L, Ammirabile A, et al. The added value of artificial intelligence to LI-RADS categorization: a systematic review.
Eur J Radiol 2022;150:110251. DOI
14. Zhou L, Rui JA, Wang SB, Chen SG, Qu Q. Clinicopathological predictors of poor survival and recurrence after curative resection in
hepatocellular carcinoma without portal vein tumor thrombosis. Pathol Oncol Res 2015;21:131-8. DOI PubMed
15. Mao B, Zhang L, Ning P, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based
radiomics. Eur Radiol 2020;30:6924-32. DOI PubMed
16. Wu M, Tan H, Gao F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics
signature. Eur Radiol 2019;29:2802-11. DOI
17. Huang J, Tian W, Zhang L, et al. Preoperative prediction power of imaging methods for microvascular invasion in hepatocellular
carcinoma: a systemic review and meta-analysis. Front Oncol 2020;10:887. DOI PubMed PMC
18. Wang Q, Li C, Zhang J, et al. Radiomics models for predicting microvascular invasion in hepatocellular carcinoma: a systematic
review and radiomics quality score assessment. Cancers 2021;13:5864. DOI PubMed PMC
19. Li L, Wu C, Huang Y, Chen J, Ye D, Su Z. Radiomics for the preoperative evaluation of microvascular invasion in hepatocellular
carcinoma: a meta-analysis. Front Oncol 2022;12:831996. DOI PubMed PMC
20. Zhong X, Long H, Su L, et al. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a
systematic review and meta-analysis. Abdom Radiol 2022;47:2071-88. DOI
21. Yu Y, Fan Y, Wang X, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and
patient prognosis in hepatocellular carcinoma. Eur Radiol 2022;32:959-70. DOI
22. Lee CW, Kuo WL, Yu MC, et al. The expression of cytokeratin 19 in lymph nodes was a poor prognostic factor for hepatocellular
carcinoma after hepatic resection. World J Surg Oncol 2013;11:136. DOI PubMed PMC
23. Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-
enhanced MRI. Eur Radiol 2020;30:3004-14. DOI PubMed
24. Ji GW, Zhu FP, Xu Q, et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a
multi-institutional study. Radiology 2020;294:568-79. DOI PubMed
25. Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma.
Eur Radiol 2020;30:3759-69. DOI PubMed PMC
26. Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated
with transarterial chemoembolization: comparison of models using radiomics. AJR Am J Roentgenol 2018;211:1026-34. DOI
PubMed
27. Kloth C, Thaiss WM, Kärgel R, et al. Evaluation of texture analysis parameter for response prediction in patients with hepatocellular