Page 136 - Read Online
P. 136

De Robertis et al. Art Int Surg 2023;3:166-79  https://dx.doi.org/10.20517/ais.2023.18                                                   Page 176

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-77.  DOI
                   PubMed  PMC
               2.       Henry T, Sun R, Lerousseau M, et al. Investigation of radiomics based intra-patient inter-tumor heterogeneity and the impact of tumor
                   subsampling strategies. Sci Rep 2022;12:17244.  DOI  PubMed  PMC
               3.       Varghese BA, Cen SY, Hwang DH, Duddalwar VA. Texture analysis of imaging: what radiologists need to know. AJR Am J
                   Roentgenol 2019;212:520-8.  DOI  PubMed
               4.       Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin
                   Oncol 2017;14:749-62.  DOI
               5.       Spadarella G, Stanzione A, Akinci D’Antonoli T, et al. Systematic review of the radiomics quality score applications: an EuSoMII
                   radiomics auditing group initiative. Eur Radiol 2023;33:1884-94.  DOI  PubMed  PMC
               6.       Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by
                   the American Association for the study of liver diseases. Hepatology 2018;68:723-50.  DOI
               7.       European Association for Study of Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical
                   practice guidelines: management of hepatocellular carcinoma. Eur J Cancer 2012;48:599-641.  DOI  PubMed
               8.       Singal A, Volk ML, Waljee A, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients
                   with cirrhosis. Aliment Pharmacol Ther 2009;30:37-47.  DOI  PubMed  PMC
               9.       Yao Z, Dong Y, Wu G, et al. Preoperative diagnosis and prediction of hepatocellular carcinoma: radiomics analysis based on multi-
                   modal ultrasound images. BMC Cancer 2018;18:1089.  DOI  PubMed  PMC
               10.      Harding-Theobald E, Louissaint J, Maraj B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular
                   carcinoma. Aliment Pharmacol Ther 2021;54:890-901.  DOI  PubMed  PMC
               11.      Dankerl P, Cavallaro A, Tsymbal A, et al. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions
                   in CT scans. Acad Radiol 2013;20:1526-34.  DOI  PubMed
               12.      Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic
                   patients with indeterminate liver nodules. Eur Radiol 2020;30:558-70.  DOI
               13.      Laino ME, Viganò L, Ammirabile A, et al. The added value of artificial intelligence to LI-RADS categorization: a systematic review.
                   Eur J Radiol 2022;150:110251.  DOI
               14.      Zhou L, Rui JA, Wang SB, Chen SG, Qu Q. Clinicopathological predictors of poor survival and recurrence after curative resection in
                   hepatocellular carcinoma without portal vein tumor thrombosis. Pathol Oncol Res 2015;21:131-8.  DOI  PubMed
               15.      Mao B, Zhang L, Ning P, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based
                   radiomics. Eur Radiol 2020;30:6924-32.  DOI  PubMed
               16.      Wu M, Tan H, Gao F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics
                   signature. Eur Radiol 2019;29:2802-11.  DOI
               17.      Huang J, Tian W, Zhang L, et al. Preoperative prediction power of imaging methods for microvascular invasion in hepatocellular
                   carcinoma: a systemic review and meta-analysis. Front Oncol 2020;10:887.  DOI  PubMed  PMC
               18.      Wang Q, Li C, Zhang J, et al. Radiomics models for predicting microvascular invasion in hepatocellular carcinoma: a systematic
                   review and radiomics quality score assessment. Cancers 2021;13:5864.  DOI  PubMed  PMC
               19.      Li L, Wu C, Huang Y, Chen J, Ye D, Su Z. Radiomics for the preoperative evaluation of microvascular invasion in hepatocellular
                   carcinoma: a meta-analysis. Front Oncol 2022;12:831996.  DOI  PubMed  PMC
               20.      Zhong X, Long H, Su L, et al. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a
                   systematic review and meta-analysis. Abdom Radiol 2022;47:2071-88.  DOI
               21.      Yu Y, Fan Y, Wang X, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and
                   patient prognosis in hepatocellular carcinoma. Eur Radiol 2022;32:959-70.  DOI
               22.      Lee CW, Kuo WL, Yu MC, et al. The expression of cytokeratin 19 in lymph nodes was a poor prognostic factor for hepatocellular
                   carcinoma after hepatic resection. World J Surg Oncol 2013;11:136.  DOI  PubMed  PMC
               23.      Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-
                   enhanced MRI. Eur Radiol 2020;30:3004-14.  DOI  PubMed
               24.      Ji GW, Zhu FP, Xu Q, et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a
                   multi-institutional study. Radiology 2020;294:568-79.  DOI  PubMed
               25.      Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma.
                   Eur Radiol 2020;30:3759-69.  DOI  PubMed  PMC
               26.      Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated
                   with transarterial chemoembolization: comparison of models using radiomics. AJR Am J Roentgenol 2018;211:1026-34.  DOI
                   PubMed
               27.      Kloth C, Thaiss WM, Kärgel R, et al. Evaluation of texture analysis parameter for response prediction in patients with hepatocellular
   131   132   133   134   135   136   137   138   139   140   141