Page 93 - Read Online
P. 93

Xing et al. Microstructures 2023;3:2023031  https://dx.doi.org/10.20517/microstructures.2023.11  Page 31 of 35

                    2016;538:222-5.  DOI
               74.       Esfandiar A, Radha B, Wang FC, et al. Size effect in ion transport through angstrom-scale slits. Science 2017;358:511-3.  DOI
               75.       Keerthi A, Geim AK, Janardanan A, et al. Ballistic molecular transport through two-dimensional channels. Nature 2018;558:420-4.
                    DOI
               76.       Hu S, Lozada-Hidalgo M, Wang FC, et al. Proton transport through one-atom-thick crystals. Nature 2014;516:227-30.  DOI
               77.       Gopinadhan K, Hu S, Esfandiar A, et al. Complete steric exclusion of ions and proton transport through confined monolayer water.
                    Science 2019;363:145-8.  DOI
               78.       Algara-Siller G, Lehtinen O, Wang FC, et al. Square ice in graphene nanocapillaries. Nature 2015;519:443-5.  DOI
               79.       Fumagalli L, Esfandiar A, Fabregas R, et al. Anomalously low dielectric constant of confined water. Science 2018;360:1339-42.  DOI
               80.       Mouterde T, Keerthi A, Poggioli AR, et al. Molecular streaming and its voltage control in ångström-scale channels. Nature
                    2019;567:87-90.  DOI
               81.       Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS
                    Nano 2016;10:3398-409.  DOI
               82.       Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization of graphene oxide paper. Nature 2007;448:457-60.  DOI
               83.       Tsou C, An Q, Lo S, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-
                    butanol dehydration. J Membr Sci 2015;477:93-100.  DOI
               84.       Zhang M, Sun J, Mao Y, Liu G, Jin W. Effect of substrate on formation and nanofiltration performance of graphene oxide
                    membranes. J Membr Sci 2019;574:196-204.  DOI
               85.       Kim HW, Yoon HW, Yoon SM, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science
                    2013;342:91-5.  DOI
               86.       Chi C, Wang X, Peng Y, et al. Facile preparation of graphene oxide membranes for gas separation. Chem Mater 2016;28:2921-7.
                    DOI
               87.       Guan K, Shen J, Liu G, Zhao J, Zhou H, Jin W. Spray-evaporation assembled graphene oxide membranes for selective hydrogen
                    transport. Sep Purif Technol 2017;174:126-35.  DOI
               88.       Ibrahim AF, Lin Y. Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci
                    2018;190:312-9.  DOI
               89.       Akbari A, Sheath P, Martin ST, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic
                    liquid crystals of graphene oxide. Nat Commun 2016;7:10891.  DOI  PubMed  PMC
               90.       Zhong J, Sun W, Wei Q, Qian X, Cheng HM, Ren W. Efficient and scalable synthesis of highly aligned and compact two-
                    dimensional nanosheet films with record performances. Nat Commun 2018;9:3484.  DOI  PubMed  PMC
               91.       Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 2013;47:3715-23.  DOI
                    PubMed
               92.       Hu M, Mi B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Membr Sci 2014;469:80-7.  DOI
               93.       Song X, Zambare RS, Qi S, et al. Charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide
                    membranes. ACS Appl Mater Interfaces 2017;9:41482-95.  DOI
               94.       Zhao J, Zhu Y, Pan F, et al. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-
                    layer self-assembly driven by multiple interactions. J Membr Sci 2015;487:162-72.  DOI
               95.       Zhao D, Chen Z, Liao X. Microstructural evolution and ferroelectricity in HfO  films. Microstructures 2022;2:2022007.  DOI
                                                                      2
               96.       Chen Z, Liao X, Zhang S. The visible hand behind properties. Microstructures 2021;1:2021001.  DOI
               97.       Xing C, Chen H, Qian S, et al. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem
                    2022;8:1201-30.  DOI
               98.       Xing C, Chen H, Zhang S. Powering 10-Ah-level Li-S pouch cell via a smart “skin”. Matter 2022;5:2523-5.  DOI
               99.       Abraham J, Vasu KS, Williams CD, et al. Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 2017;12:546-
                    50.  DOI
               100.      Li W, Wu W, Li Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano
                    2018;12:9309-17.  DOI
               101.      Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature
                    2017;550:380-3.  DOI
               102.      Qiu L, Zhang X, Yang W, Wang Y, Simon GP, Li D. Controllable corrugation of chemically converted graphene sheets in water and
                    potential application for nanofiltration. Chem Commun 2011;47:5810-2.  DOI
               103.      Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 2013;23:3693-700.  DOI
               104.      Liu H, Wang H, Zhang X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv
                    Mater 2015;27:249-54.  DOI
               105.      Hung W, Tsou C, De Guzman M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework
                    membranes with varying d -spacing. Chem Mater 2014;26:2983-90.  DOI
               106.      Zhang M, Mao Y, Liu G, Liu G, Fan Y, Jin W. Molecular bridges stabilize graphene oxide membranes in water. Angew Chem Int Ed
                    2020;59:1689-95.  DOI  PubMed
               107.      Jia Z, Shi W. Tailoring permeation channels of graphene oxide membranes for precise ion separation. Carbon 2016;101:290-5.  DOI
               108.      Lim M, Choi Y, Kim J, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared
   88   89   90   91   92   93   94   95   96   97   98