Page 92 - Read Online
P. 92

Page 30 of 35         Xing et al. Microstructures 2023;3:2023031  https://dx.doi.org/10.20517/microstructures.2023.11

               41.       Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev
                    2012;112:4124-55.  DOI  PubMed
               42.       Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and
                    exploration of functionality. Acc Chem Res 2015;48:136-43.  DOI  PubMed
               43.       Varoon K, Zhang X, Elyassi B, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science
                    2011;334:72-5.  DOI
               44.       Ren J, Liu X, Zhang L, Liu Q, Gao R, Dai W. Thermal oxidative etching method derived graphitic C N : highly efficient metal-free
                                                                                      3  4
                    catalyst in the selective epoxidation of styrene. RSC Adv 2017;7:5340-8.  DOI
               45.       Yu J, Li J, Zhang W, Chang H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem Sci
                    2015;6:6705-16.  DOI  PubMed  PMC
               46.       Shi Y, Li H, Li LJ. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour
                    deposition techniques. Chem Soc Rev 2015;44:2744-56.  DOI
               47.       Ou M, Wang X, Yu L, et al. The emergence and evolution of borophene. Adv Sci 2021;8:2001801.  DOI  PubMed  PMC
               48.       Huang S, Dakhchoune M, Luo W, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat
                    Commun 2018;9:2632.  DOI  PubMed  PMC
               49.       Zhang J, Lin L, Sun L, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid
                    cells. Adv Mater 2017;29:1700639.  DOI
               50.       Chen Y, Gong XL, Gai JG. Progress and challenges in transfer of large-area graphene films. Adv Sci 2016;3:1500343.  DOI  PubMed
                    PMC
               51.       Jeon MY, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature
                    2017;543:690-4.  DOI
               52.       Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Surface nano-architecture of a metal-organic
                    framework. Nat Mater 2010;9:565-71.  DOI  PubMed
               53.       Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater
                    2015;14:48-55.  DOI  PubMed  PMC
               54.       Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev 2012;41:6010-22.  DOI  PubMed
               55.       Dai W, Shao F, Szczerbiński J, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at
                    the air/water interface. Angew Chem Int Ed 2016;128:221-5.  DOI
               56.       Kandambeth S, Biswal BP, Chaudhari HD, et al. Selective molecular sieving in self-standing porous covalent-organic-framework
                    membranes. Adv Mater 2017;29:1603945.  DOI
               57.       Moreno C, Vilas-Varela M, Kretz B, et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 2018;360:199-203.
                    DOI
               58.       Fischbein MD, Drndić M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 2008;93:113107.  DOI
               59.       Koenig SP, Wang L, Pellegrino J, Bunch JS. Selective molecular sieving through porous graphene. Nat Nanotechnol 2012;7:728-32.
                    DOI  PubMed
               60.       Celebi K, Buchheim J, Wyss RM, et al. Ultimate permeation across atomically thin porous graphene. Science 2014;344:289-92.  DOI
               61.       Russo CJ, Golovchenko JA. Atom-by-atom nucleation and growth of graphene nanopores. Proc Natl Acad Sci USA 2012;109:5953-7.
                    DOI  PubMed  PMC
               62.       O’Hern SC, Boutilier MS, Idrobo JC, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene
                    membranes. Nano Lett 2014;14:1234-41.  DOI
               63.       Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011;332:1537-41.
                    DOI
               64.       Zhang LL, Zhao X, Stoller MD, et al. Highly conductive and porous activated reduced graphene oxide films for high-power
                    supercapacitors. Nano Lett 2012;12:1806-12.  DOI
               65.       Zhao X, Hayner CM, Kung MC, Kung HH. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage
                    applications. ACS Nano 2011;5:8739-49.  DOI  PubMed
               66.       Wang X, Jiao L, Sheng K, Li C, Dai L, Shi G. Solution-processable graphene nanomeshes with controlled pore structures. Sci Rep
                    2013;3:1996.  DOI  PubMed  PMC
               67.       Palaniselvam T, Valappil MO, Illathvalappil R, Kurungot S. Nanoporous graphene by quantum dots removal from graphene and its
                    conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ Sci 2014;7:1059.  DOI
               68.       Zhou D, Cui Y, Xiao PW, Jiang MY, Han BH. A general and scalable synthesis approach to porous graphene. Nat Commun
                    2014;5:4716.  DOI
               69.       Gilbert SM, Dunn G, Azizi A, et al. Fabrication of subnanometer-precision nanopores in hexagonal boron nitride. Sci Rep
                    2017;7:15096.  DOI  PubMed  PMC
               70.       Feng J, Graf M, Liu K, et al. Single-layer MoS  nanopores as nanopower generators. Nature 2016;536:197-200.  DOI
                                                  2
               71.       Feng J, Liu K, Graf M, et al. Electrochemical reaction in single layer MoS : nanopores opened atom by atom. Nano Lett
                                                                         2
                    2015;15:3431-8.  DOI
               72.       Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013;499:419-25.  DOI
               73.       Radha B, Esfandiar A, Wang FC, et al. Molecular transport through capillaries made with atomic-scale precision. Nature
   87   88   89   90   91   92   93   94   95   96   97