Page 39 - Read Online
P. 39
Hansen et al. Microstructures 2023;3:2023029 https://dx.doi.org/10.20517/microstructures.2023.17 Page 17 of 17
17. Ma X, Zhao D, Yadav S, Sagapuram D, Xie KY. Grain-subdivision-dominated microstructure evolution in shear bands at high rates.
Mate Res Lett 2020;8:328-34. DOI
18. Yadav D, Zhao D, Baldwin JK, Devaraj A, Demkowicz MJ, Xie KY. Persistence of crystal orientations across sub-micron-scale
“super-grains” in self-organized Cu-W nanocomposites. Scr Mater 2021;194:113677. DOI
19. Johnstone DN, van Helvoort ATJ, Midgley PA. Nanoscale strain tomography by scanning precession electron diffraction. Microsc
Microanal 2017;23:1710-1. DOI
20. Ånes HW, Andersen IM, van Helvoort ATJ. Crystal phase mapping by scanning precession electron diffraction and machine learning
decomposition. Microsc Microanal 2018;24:586-7. DOI
21. Martineau BH, Johnstone DN, van Helvoort ATJ, Midgley PA, Eggeman AS. Unsupervised machine learning applied to scanning
precession electron diffraction data. Adv Struct Chem Imaging 2019;3:5. DOI
22. Bergh T, Johnstone DN, Crout P, et al. Nanocrystal segmentation in scanning precession electron diffraction data. J Microsc
2020;279:158-67. DOI
23. Portillo J, Rauch EF, Nicolopoulos S, Gemmi M, Bultreys D. Precession electron diffraction assisted orientation mapping in the
transmission electron microscope. In: Materials Science Forum; 2010. pp. 1-7. DOI
24. Zhang Y, Fincher CD, Gurrola RM, et al. Strategic texturation of VO thin films for tuning mechanical, structural, and electronic
2
couplings during metal-insulator transitions. Acta Mater 2023;242:118478. DOI
25. Zhao D, Patel A, Barbosa A, et al. A reference-area-free strain mapping method using precession electron diffraction data.
Ultramicroscopy 2023;247:113700. DOI
26. Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater
Des 2014;56:1078-113. DOI
27. Schofield P, Bradicich A, Gurrola RM, et al. Harnessing the metal-insulator transition of VO in neuromorphic computing. Adv Mater
2
2022:e2205294. DOI
28. Corti E, Gotsmann B, Moselund K, Ionescu AM, Robertson J, Karg S. Scaled resistively-coupled VO oscillators for neuromorphic
2
computing. Solid State Electron 2020;168:107729. DOI
29. de la Pena F, Ostasevicius T, Tonaas Fauske V, et al. Electron microscopy (big and small) data analysis with the open source software
package hyperspy. Microsc Microanal 2017;23:214-5. DOI
30. Wang L, Zhang Y, Feng J. On the Euclidean distance of images. IEEE Trans Pattern Anal Mach Intell 2005;27:1334-9. DOI
31. Xia P, Zhang L, Li F. Learning similarity with cosine similarity ensemble. Inf Sci 2015;307:39-52. DOI
32. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans
Pattern Anal Mach Intell 2004;13:600-12. DOI
33. Lloyd S. Least squares quantization in PCM. IEEE Trans Pattern Anal Mach Intell 1982:28;129-37. DOI
34. Gulli A, Pal S. Deep learning with Keras. Birmingham: Packt; 2017.
35. Mika S, Schölkopf B, Smola A, Müller K-R, Scholz M, Rätsch G. Kernel PCA and de-noising in feature spaces. In: advances in neural
information processing systems. Cambridge: MIT Press;1999: pp. 536-42.
36. Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. Stanford, 2006. Available from: https://
www.researchgate.net/publication/220778887_K-Means_The_Advantages_of_Careful_Seeding [Last accessed on 27 Jun 2023].
37. Zhao Y, Hwan Lee J, Zhu Y, et al. Structural, electrical, and terahertz transmission properties of VO thin films grown on c-, r-, and m-
2
plane sapphire substrates. J Appl Phys 2012;111:053533. DOI
38. Fan LL, Wu YF, Si C, Pan GQ, Zou CW, Wu ZY. Synchrotron radiation study of VO crystal film epitaxial growth on sapphire
2
substrate with intrinsic multi-domains. Appl Phys Lett 2013;102:011604. DOI
39. Gonzalez RC, Woods RE. Digital image processing. Pearson education: India; 2009.
40. Dhanachandra N, Manglem K, Chanu YJ. Image segmentation using k-means clustering algorithm and subtractive clustering
algorithm. Procedia Comput Sci 2015;54:764-71. DOI
41. Ray S, Turi RH. Determination of number of clusters in K-means clustering and application in colour image segmentation. In: 4th
International Conference on Advances in Pattern Recognition and Digital Techniques. 2023 Jun 17-18; Sydney, Australia. pp. 137-43.
42. Ghahramani Z. Unsupervised learning.In: Advanced Lectures on Machine Learning. 2003 Feb 2-14; ML Summer Schools, Canberra,
Australia. pp. 72-112 DOI
43. Ophus C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography
and beyond. Microsc Microanal 2019;25:563-82. DOI PubMed
44. Williams DB, Carter CB. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry. Springer; 2009.
45. Oleynikov P, Hovmöller S, Zou XD. Precession electron diffraction: observed and calculated intensities. Ultramicroscopy
2007;107:523-33. DOI PubMed