Page 38 - Read Online
P. 38

Page 16 of 17      Hansen et al. Microstructures 2023;3:2023029  https://dx.doi.org/10.20517/microstructures.2023.17

               Authors’ contributions
               Designed this study and performed data analysis and interpretation: Hansen MH, Wang AL, Xie KY
               Prepared the samples and performed data acquisition: Dong J, Zhang Y, Umale T
               All authors contributed to the intellectual merit and writing of the manuscript.

               Availability of data and materials
               The code used for our algorithms can be found on GitHub (https://github.com/TAMU-MHansen/PED-
               Similarity-Mapping).  A  tutorial  on  how  to  use  our  code  can  be  found  on  YouTube:  https://
               www.youtube.com/watch?v=Jr_QxVrVcbg.


               Financial support and sponsorship
               Hansen MH, Wang AL, Dong J, Umale T, Karaman I and Xie KY acknowledge the funding support from
               the National Science Foundation (NSF-DMR, grant number: 2004752). Zhang Y, Shamberger P, Banerjee S,
               and Pharr M acknowledge partial support from the Department of Energy under DE-SC0023353.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Nishiyama Z. Martensitic transformation. Amsterdam: Elsevier; 2012.
               2.       Bhadeshia H, Honeycombe R. Steels: microstructure and properties. Oxford: Butterworth-Heinemann; 2017.
               3.       Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and
                   mechanical properties of a low alloyed TRIP steel. Acta Mater 2004;52:2765-78.  DOI
               4.       Lagoudas DC. Shape memory alloys: modeling and engineering applications. Berlin: Springer; 2008.
               5.       Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 2005;50:511-678.  DOI
               6.       Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5.  DOI
               7.       Morin FJ. Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett 1959;3:34-6.  DOI
               8.       Goodenough JB. The two components of the crystallographic transition in VO . J Solid State Chem 1971;3:490-500.  DOI
                                                                     2
               9.       Han X, Zou W, Wang R, Zhang Z, Yang D. Structure and substructure of martensite in a Ti  Ni  Hf  high temperature shape
                                                                                  36.5  48.5  15
                   memory alloy. Acta Mater 1996;44:3711-21.  DOI
               10.      Nishida M, Nishiura T, Kawano H, Inamura T. Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys - part I.
                   morphological and crystallographic studies of the variant selection rule. Philos Mag 2012;92:2215-33.  DOI
               11.      Dong J, Umale T, Young B, Karaman I, Xie KY. Structure and substructure characterization of solution-treated Ni 50.3 Ti 29.7 Hf  high-
                                                                                                     20
                   temperature shape memory alloy. Scr Mater 2022;219:114888.  DOI
               12.      Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe R. Relationship between crystallographic compatibility and thermal
                   hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 2016;121:374-83.  DOI
               13.      Karaca H, Saghaian S, Ded G, et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf
                   high temperature shape memory alloy. Acta Mater 2013;61:7422-31.  DOI
               14.      Cayron C. What EBSD and TKD tell us about the crystallography of the martensitic B2-B19′ transformation in NiTi shape memory
                   alloys. Crystals 2020;10:562.  DOI
               15.      Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P. Automated nanocrystal orientation and phase mapping in the
                   transmission electron microscope on the basis of precession electron diffraction. Z Kristall 2010;225:103-9.  DOI
               16.      Rottmann PF, Hemker KJ. Experimental observations of twin formation during thermal annealing of nanocrystalline copper films
                   using orientation mapping. Scr Mater 2017;141:76-9.  DOI
   33   34   35   36   37   38   39   40   41   42   43