Page 265 - Read Online
P. 265
Keeney et al. Microstructures 2023;3:2023041 https://dx.doi.org/10.20517/microstructures.2023.41 Page 13 of 15
Performing XRD characterization and interpreting the ultrathin B6TFMO films: Dutta D
Conducting FIB cross-sectioning of lamellae for TEM and performing HR-TEM analysis of the B6TFMO
thin films: Schmidt M
Handling XRR analysis and interpretating the ultrathin B6TFMO films: Wei G
All authors have given their approval to the final version of the manuscript.
Availability of data and materials
The accepted publication is available on the open access University College Cork (UCC) CORA repository
(https://cora.ucc.ie/).
Financial support and sponsorship
This work was supported by the Royal Society-Science Foundation Ireland (SFI) University Research
Fellowship URF\R\201008 and the SFI Frontiers for the Future Project 19/FFP/6475.
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Scott JF. Future issues in ferroelectric miniaturization. Ferroelectrics 1998;206:365-79. DOI
2. Li S, Eastman JA, Vetrone JM, Foster CM, Newnham RE, Cross LE. Dimension and size effects in ferroelectrics. Jpn J Appl Phys
1997;36:5169. DOI
3. Qiao H, Wang C, Choi WS, Park MH, Kim Y. Ultra-thin ferroelectrics. Mater Sci Eng R Rep 2021;145:100622. DOI
4. Tybell T, Ahn CH, Triscone J. Ferroelectricity in thin perovskite films. Appl Phys Lett 1999;75:856-8. DOI
5. Fong DD, Stephenson GB, Streiffer SK, et al. Ferroelectricity in ultrathin perovskite films. Science 2004;304:1650-3. DOI
6. Choi KJ, Biegalski M, Li YL, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 2004;306:1005-9. DOI
7. Cheema SS, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020;580:478-82.
DOI
8. Vasudevan RK, Matsumoto Y, Cheng X, et al. Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat
Commun 2014;5:4971. DOI
9. Guo YY, Gibbs AS, Perez-Mato JM, Lightfoot P. Unexpected phase transition sequence in the ferroelectric Bi Ti O . IUCrJ
3
12
4
2019;6:438-46. DOI PubMed PMC
10. Deepak N, Zhang PF, Keeney L, Pemble ME, Whatmore RW. Atomic vapor deposition of bismuth titanate thin films. J Appl Phys
2013;113:187207. DOI
11. Keeney L, Groh C, Kulkarni S, Roy S, Pemble ME, Whatmore RW. Room temperature electromechanical and magnetic investigations
of ferroelectric Aurivillius phase Bi Ti (FexMn )O (x = 1 and 0.7) chemical solution deposited thin films. J Appl Phys
5
1-x
3
15
2012;112:024101. DOI
12. Keeney L, Kulkarni S, Deepak N, et al. Room temperature ferroelectric and magnetic investigations and detailed phase analysis of
Aurivillius phase Bi Ti Fe Co O thin films. J Appl Phys 2012;112:052010. DOI
5 3 0.7 0.3 15
13. Keeney L, Zhang PF, Groh C, Pemble ME, Whatmore RW. Piezoresponse force microscopy investigations of Aurivillius phase thin
films. J Appl Phys 2010;108:042004. DOI
14. Zhang PF, Deepak N, Keeney L, Pemble ME, Whatmore RW. The structural and piezoresponse properties of c-axis-oriented
Aurivillius phase Bi Ti FeO thin films deposited by atomic vapor deposition. Appl Phys Lett 2012;101:112903. DOI
3
5
15
15. Wouters DJ, Maes D, Goux L, et al. Integration of SrBi Ta O thin films for high density ferroelectric random access memory. J Appl
9
2
2
Phys 2006;100:051603. DOI