Page 266 - Read Online
P. 266

Page 14 of 15      Keeney et al. Microstructures 2023;3:2023041  https://dx.doi.org/10.20517/microstructures.2023.41

               16.      Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature
                   1999;401:682-4.  DOI
               17.      Annual report pursuant to section 13 or 15(d) of the securities exchange act of 1934 for the fiscal year ended March 31, 2006
                   commission file number 1 - 6784. Available from:  https://www.sec. gov/Archives/edgar/data/63271/000119312506188347/d20f.htm
                   [Last accessed on 16 Oct 2023].
               18.      Fujii E, Uchiyama K. First 0.18 μm SBT-based embedded FeRAM technology with hydrogen damage free stacked cell structure.
                   Integr Ferroelectr 2003;53:317-23.  DOI
               19.      Pitcher MJ, Mandal P, Dyer MS, et al. Magnetic materials. Tilt engineering of spontaneous polarization and magnetization above
                   300 K in a bulk layered perovskite. Science 2015;347:420-4.  DOI
               20.      Suwardi A, Prasad B, Lee S, et al. Turning antiferromagnetic Sm 0.34 Sr 0.66 MnO  into a 140 K ferromagnet using a nanocomposite strain
                                                                     3
                   tuning approach. Nanoscale 2016;8:8083-90.  DOI
               21.      Choi EM, Maity T, Kursumovic A, et al. Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO  films. Nat
                                                                                                  3
                   Commun 2020;11:2207.  DOI  PubMed  PMC
               22.      Srihari NV, Vinayakumar KB, Nagaraja KK. Magnetoelectric coupling in bismuth ferrite - challenges and perspectives.
                   Coatings 2020;10:1221.  DOI
               23.      Keeney L, Maity T, Schmidt M, et al. Magnetic field-induced ferroelectric switching in multiferroic aurivillius phase thin films at
                   room temperature. J Am Ceram Soc 2013;96:2339-57.  DOI
               24.      Faraz A, Maity T, Schmidt M, et al. Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic
                   aurivillius phase thin films. J Am Ceram Soc 2017;100:975-87.  DOI
               25.      Moore K, O'Connell EN, Griffin SM, et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric
                   multiferroic thin film. ACS Appl Mater Interfaces 2022;14:5525-36.  DOI  PubMed  PMC
               26.      Keeney L, Smith RJ, Palizdar M, et al. Ferroelectric behavior in exfoliated 2D aurivillius oxide flakes of sub-unit cell thickness. Adv
                   Elect Materials 2020;6:1901264.  DOI
               27.      Keeney L, Saghi Z, O’sullivan M, Alaria J, Schmidt M, Colfer L. Persistence of ferroelectricity close to unit-cell thickness in
                   structurally disordered aurivillius phases. Chem Mater 2020;32:10511-23.  DOI
               28.      Keeney L, Colfer L, Schmidt M. Probing ferroelectric behavior in sub-10 nm bismuth-rich aurivillius films by piezoresponse force
                   microscopy. Microsc Microanal 2022;28:1396-406.  DOI
               29.      Gradauskaite E, Campanini M, Biswas B, et al. Robust in-plane ferroelectricity in ultrathin epitaxial aurivillius films. Adv Materials
                   Inter 2020;7:2000202.  DOI
               30.      Gradauskaite E, Gray N, Campanini M, Rossell MD, Trassin M. Nanoscale design of high-quality epitaxial aurivillius thin films. Chem
                   Mater 2021;33:9439-46.  DOI
               31.      Wang Y, Chen W, Wang B, Zheng Y. Ultrathin ferroelectric films: growth, characterization, physics and applications. Materials
                   2014;7:6377-485.  DOI  PubMed  PMC
               32.      Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford: Oxford University Press; 1977. p.525.
                   Available from: https://academic.oup.com/book/25990 [Last accessed on 11 Oct 2023].
               33.     Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys 1984;47:399.  DOI
               34.     Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56:930-3.  DOI  PubMed
               35.      Steffes JJ, Ristau RA, Ramesh R, Huey BD. Thickness scaling of ferroelectricity in BiFeO  by tomographic atomic force microscopy.
                                                                              3
                   Proc Natl Acad Sci USA 2019;116:2413-8.  DOI  PubMed  PMC
               36.      Wang J, Yan Y, Li Z, Geng Y, Luo X, Fan P. Processing outcomes of atomic force microscope tip-based nanomilling with different
                   trajectories on single-crystal silicon. Precis Eng 2021;72:480-90.  DOI
               37.      Iwata F, Saigo K, Asao T, et al. Removal method of nano-cut debris for photomask repair using an atomic force microscopy system.
                   Jpn J Appl Phys 2009;48:08JB20.  DOI
               38.      Robinson T, Dinsdale A, Bozak R, White R, Archuletta M. Nanomachining processes for 45, 32 nm mode mask repair and beyond.
                   Procedings of the Photomask and Next-Generation Lithography Mask Technology XV; 2008 May 19; Yokohama, Japan.  DOI
               39.      Robinson T, Dinsdale A, Bozak R, Arruza B. Advanced mask particle cleaning solutions. Procedings of the SPIE Photomask
                   Technology; 2007 Oct 30; Monterey, United States.  DOI
               40.      Bartkowska JA, Bochenek D, Niemiec P. Multiferroic aurivillius-type Bi Fe Mn Ti O  (0 ≤ x ≤ 1.5) ceramics with negative
                                                                             3
                                                                           x
                                                                     6
                                                                       2-x
                                                                               18
                   dielectric constant. Appl Phys A 2018;124:823.  DOI
               41.      Sader JE, Borgani R, Gibson CT, et al. A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Rev
                   Sci Instrum 2016;87:093711.  DOI
               42.      Kalinin SV, Rodriguez BJ, Jesse S, et al. Vector piezoresponse force microscopy. Microsc Microanal 2006;12:206-20.  DOI
               43.      Ismunandar, Kamiyama T, Hoshikawa A, et al. Structural studies of five layer Aurivillius oxides: A Bi Ti O  (A = Ca, Sr, Ba and Pb).
                                                                                   2  4  5  18
                   J Solid State Chem 2004;177:4188-96.  DOI
               44.      Holder CF, Schaak RE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019;13:7359-65.
                   DOI  PubMed
               45.      Frank FC, van der Merwe JH. One-dimensional dislocations III. Influence of the second harmonic term in the potential representation,
                   on the properties of the model. Proceedings of the Royal Society of London; 1949 Dec 22; London, UK. London: Royal; pp. 125-34.
               46.      Trolier-mckinstry S. Crystal chemistry of piezoelectric materials. In: Safari A, Akdoğan EK, editors. Piezoelectric and acoustic
                   materials for transducer applications. Boston: Springer US; 2008. pp. 39-56.  DOI
   261   262   263   264   265   266   267   268   269   270   271