Page 65 - Read Online
P. 65

Teng et al. Microstructures 2023;3:2023019  https://dx.doi.org/10.20517/microstructures.2023.07  Page 29 of 29

               142.      Xu L, Hu Y, Zhang H, Jiang H, Li C. Confined synthesis of FeS  nanoparticles encapsulated in carbon nanotube hybrids for
                                                                 2
                    ultrastable lithium-ion batteries. ACS Sustain Chem Eng 2016;4:4251-5.  DOI
               143.      Yu WJ, Liu C, Hou PX, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 2015;9:5063-71.  DOI
                    PubMed
               144.      Li S, Liu Y, Guo P, Wang C. Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate
                    and long lifespan anode materials in lithium ion batteries. ACS Appl Mater Interfaces 2017;9:26818-25.  DOI  PubMed
               145.      Liu Y, Wu N, Wang Z, Cao H, Liu J. Fe O  nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium
                                               3  4
                    storage capability. New J Chem 2017;41:6241-50.  DOI
               146.      Kim S, Song H, Jeong Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery. Carbon
                    2017;113:371-8.  DOI
               147.      Landi BJ, Ganter MJ, Cress CD, Dileo RA, Raffaelle RP. Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2009;2:638.
                    DOI
               148.      Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater 2015;14:271-9.
                    DOI  PubMed
               149.      Kodama T, Ohnishi M, Park W, et al. Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene
                    encapsulation. Nat Mater 2017;16:892-7.  DOI  PubMed
               150.      Fukumaru T, Fujigaya T, Nakashima N. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable
                    thermoelectric property. Sci Rep 2015;5:7951.  DOI  PubMed  PMC
               151.      Aygün M, Stoppiello CT, Lebedeva MA, et al. Comparison of alkene hydrogenation in carbon nanoreactors of different diameters:
                    probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. J Mater Chem A 2017;5:21467-77.  DOI
               152.      Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA. Catalytic nanoreactors in continuous flow: hydrogenation
                    inside single-walled carbon nanotubes using supercritical CO . Chem Commun 2014;50:5200-2.  DOI  PubMed
                                                           2
               153.      Che G, Lakshmi BB, Martin CR, Fisher ER. Metal-nanocluster-filled carbon nanotubes:  catalytic properties and possible applications
                    in electrochemical energy storage and production. Langmuir 1999;15:750-8.  DOI
               154.      Ellis JE, Star A. Carbon nanotube based gas sensors toward breath analysis. Chempluschem 2016;81:1248-65.  DOI  PubMed
               155.      Tian R, Wang S, Hu X, et al. Novel approaches for highly selective, room-temperature gas sensors based on atomically dispersed
                    non-precious metals. J Mater Chem A 2020;8:23784-94.  DOI
               156.      Qin M, Li J, Song Y. Toward high sensitivity: perspective on colorimetric photonic crystal sensors. Anal Chem 2022;94:9497-507.
                    DOI  PubMed
               157.      Qin Z, Sun X, Zhang H, et al. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with
                    broad operating temperature. J Mater Chem A 2020;8:4447-56.  DOI
               158.      Luo C, Jia J, Gong Y, Wang Z, Fu Q, Pan C. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl
                    Mater Interfaces 2017;9:19955-62.  DOI  PubMed
               159.      liu H, Jiang H, Du F, Zhang D, Li Z, Zhou H. Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem
                    Eng 2017;5:10538-43.  DOI
               160.      Kim J, Choi S, Lee J, Chung Y, Byun YT. Gas sensing properties of defect-induced single-walled carbon nanotubes. Sens Actuator A
                    Phys 2016;228:688-92.  DOI
               161.      Quang NH, Van Trinh M, Lee B, Huh J. Effect of NH  gas on the electrical properties of single-walled carbon nanotube bundles. Sens
                                                       3
                    Actuators B Chem 2006;113:341-6.  DOI
               162.      Nguyen H, Huh J. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation.
                    Sens Actuators B Chem 2006;117:426-30.  DOI
               163.      Qi P, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and
                    selective molecular detection. Nano Lett 2003;3:347-51.  DOI  PubMed
               164.      Ramachandran K, Raj Kumar T, Babu KJ, Gnana Kumar G. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the
                    highly sensitive and selective non-enzymatic glucose sensor applications. Sci Rep 2016;6:36583.  DOI  PubMed  PMC
               165.      Chimowa G, Tshabalala ZP, Akande AA, et al. Improving methane gas sensing properties of multi-walled carbon nanotubes by
                    vanadium oxide filling. Sens Actuators B Chem 2017;247:11-8.  DOI
               166.      Fedi F, Domanov O, Shiozawa H, et al. Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO  exposure
                                                                                                   2
                    under ambient conditions. J Mater Chem A 2020;8:9753-9.  DOI
   60   61   62   63   64   65   66   67   68   69   70