Page 64 - Read Online
P. 64

Page 28 of 29        Teng et al. Microstructures 2023;3:2023019  https://dx.doi.org/10.20517/microstructures.2023.07

               110.      Wang L, Sofer Z, Bouša D, et al. Graphane nanostripes. Angew Chem Int Ed 2016;55:13965-9.  DOI  PubMed
               111.      Fu L, Shang C, Zhou S, Guo Y, Zhao J. Transition metal halide nanowires: a family of one-dimensional multifunctional building
                    blocks. Appl Phys Lett 2022;120:023103.  DOI
               112.      Kharlamova MV. Kinetics, electronic properties of filled carbon nanotubes investigated with spectroscopy for applications.
                    Nanomaterials 2022;13:176.  DOI  PubMed  PMC
               113.      Nonnenmacher M, Wickramasinghe H. Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 1992;42-
                    44:351-4.  DOI
               114.      Kharlamova MV, Eliseev AA, Yashina LV, et al. Study of the electronic structure of single-walled carbon nanotubes filled with
                    cobalt bromide. JETP Lett 2010;91:196-200.  DOI
               115.      Kharlamova MV, Brzhezinskay MM, Vinogradov AS, et al. The formation and properties of one-dimensional FeHal  (Hal = Cl, Br, I)
                                                                                               2
                    nanocrystals in channels of single-walled carbon nanotubes. Nanotechnol Russ 2009;4:634-46.  DOI
               116.      Kharlamova MV, Yashina LV, Lukashin AV. Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J
                    Mater Sci 2013;48:8412-9.  DOI
               117.      Kharlamova MV, Volykhov AA, Yashina LV, Egorov AV, Lukashin AV. Experimental and theoretical studies on the electronic
                    properties of praseodymium chloride-filled single-walled carbon nanotubes. J Mater Sci 2015;50:5419-30.  DOI
               118.      Kharlamova MV. Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled
                    carbon nanotubes. Appl Phys A 2013;111:725-31.  DOI
               119.      Kharlamova MV. Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of
                    high-melting gallium selenide using a single-step process. JETP Lett 2013;98:272-7.  DOI
               120.      Yashina LV, Eliseev AA, Kharlamova MV, et al. Growth and characterization of one-dimensional SnTe crystals within the single-
                    walled carbon nanotube channels. J Phys Chem C 2011;115:3578-86.  DOI
               121.      Si R, Fischer CF. Electron affinities of at and its homologous elements Cl, Br, and I. Phys Rev A 2018;98:052504.  DOI
               122.      Jorio A, Saito R. Raman spectroscopy for carbon nanotube applications. J Appl Phys 2021;129:021102.  DOI
               123.      Kharlamova MV, Eliseev AA, Yashina LV, Lukashin AV, Tretyakov YD. Synthesis of nanocomposites on basis of single-walled
                    carbon nanotubes intercalated by manganese halogenides. J Phys Conf Ser 2012;345:012034.  DOI
               124.      Kharlamova MV, Yashina LV, Eliseev AA, et al. Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and
                    doping effect. Phys Status Solidi B 2012;249:2328-32.  DOI
               125.      Kharlamova MV, Kramberger C, Mittelberger A. Raman spectroscopy study of the doping effect of the encapsulated terbium
                    halogenides on single-walled carbon nanotubes. Appl Phys A 2017;123:239.  DOI
               126.      Kharlamova MV, Kramberger C, Pichler T. Semiconducting response in single-walled carbon nanotubes filled with cadmium
                    chloride: semiconducting response in SWCNTs filled with CdCl . Phys Status Solidi B 2016;253:2433-9.  DOI
                                                             2
               127.      Kharlamova MV, Sauer M, Saito T, et al. Doping of single-walled carbon nanotubes controlled via chemical transformation of
                    encapsulated nickelocene. Nanoscale 2015;7:1383-91.  DOI  PubMed
               128.      Nascimento VV, Neves WQ, Alencar RS, et al. Origin of the giant enhanced raman scattering by sulfur chains encapsulated inside
                    single-wall carbon nanotubes. ACS Nano 2021;15:8574-82.  DOI  PubMed
               129.      Li G, Fu C, Oviedo MB, et al. Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon
                    nanotubes. J Am Chem Soc 2016;138:40-3.  DOI  PubMed
               130.      Mijit E, Trapananti A, Minicucci M, et al. Development of a high temperature diamond anvil cell for x ray absorption experiments
                    under extreme conditions. Radiat Phys Chem 2020;175:108106.  DOI
               131.      Fedoseeva YV, Orekhov AS, Chekhova GN, et al. Single-walled carbon nanotube reactor for redox transformation of mercury
                    dichloride. ACS Nano 2017;11:8643-9.  DOI  PubMed
               132.      Gets AV, Krainov VP. Conductivity of single-walled carbon nanotubes. J Exp Theor Phys 2016;123:1084-9.  DOI
               133.      Khosravi M, Badehian HA, Habibinejad M. Optical properties of double walled carbon nanotubes. J Electron Spectros Relat
                    Phenomena 2021;248:147058.  DOI
               134.      Shang Y, Hua C, Xu W, et al. Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett
                    2016;16:1768-75.  DOI  PubMed
               135.      Chen C, Song C, Yang J, et al. Intramolecular p-i-n junction photovoltaic device based on selectively doped carbon nanotubes. Nano
                    Energy 2017;32:280-6.  DOI
               136.      Chiba T, Amma Y, Takashiri M. Heat source free water floating carbon nanotube thermoelectric generators. Sci Rep 2021;11:14707.
                    DOI  PubMed  PMC
               137.      Wang JG, Liu H, Zhang X, Li X, Liu X, Kang F. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for
                    high-efficient energy storage. Small 2018;14:e1703950.  DOI  PubMed
               138.      Bychko IB, Abakumov AA, Lemesh NV, Strizhak PE. Catalytic activity of multiwalled carbon nanotubes in acetylene hydrogenation.
                    ChemCatChem 2017;9:4470-4.  DOI
               139.      Liu J, Lu J, Lin X, et al. The electronic properties of chiral carbon nanotubes. Comput Mater Sci 2017;129:290-4.  DOI
               140.      Li Y, Kaneko T, Kong J, Hatakeyama R. Photoswitching in azafullerene encapsulated single-walled carbon nanotube FET devices. J
                    Am Chem Soc 2009;131:3412-3.  DOI  PubMed
               141.      Li YF, Hatakeyama R, Shishido J, Kato T, Kaneko T. Air-stable p-n junction diodes based on single-walled carbon nanotubes
                    encapsulating Fe nanoparticles. Appl Phys Lett 2007;90:173127.  DOI
   59   60   61   62   63   64   65   66   67   68   69