Page 61 - Read Online
P. 61

Teng et al. Microstructures 2023;3:2023019  https://dx.doi.org/10.20517/microstructures.2023.07  Page 25 of 29

                    metallocene-filled single-walled carbon nanotubes. Fuller Nanotub Carbon Nanostruct 2020;28:20-6.  DOI
               18.       Vasylenko A, Marks S, Wynn JM, et al. Electronic structure control of sub-nanometer 1D SnTe via Nanostructuring within single-
                    walled carbon nanotubes. ACS Nano 2018;12:6023-31.  DOI  PubMed
               19.       Koizumi R, Hart AH, Brunetto G, et al. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon
                    2016;110:27-33.  DOI
               20.       Pan X, Bao X. The effects of confinement inside carbon nanotubes on catalysis. ACC Chem Res 2011;44:553-62.  DOI  PubMed
               21.       Nieto-Ortega B, Villalva J, Vera-Hidalgo M, Ruiz-González L, Burzurí E, Pérez EM. Band-gap opening in metallic single-walled
                    carbon nanotubes by encapsulation of an organic salt. Angew Chem Int Ed 2017;56:12240-4.  DOI  PubMed
               22.       Ivanov VG, Kalashnyk N, Sloan J, Faulques E. Vibrational dynamics of extreme 2 × 2 and 3 × 3 potassium iodide nanowires
                    encapsulated in single-walled carbon nanotubes. Phys Rev B 2018;98:125429.  DOI
               23.       Chiu PW, Gu G, Kim GT, et al. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl
                    Phys Lett 2001;79:3845-7.  DOI
               24.       Chimowa G, Yang L, Lonchambon P, et al. Tailoring of double-walled carbon nanotubes for formaldehyde sensing through
                    encapsulation of selected materials. Phys Status Solidi A 2019;216:1900279.  DOI
               25.       Kato T, Hatakeyama R, Shishido J, Oohara W, Tohji K. P-N junction with donor and acceptor encapsulated single-walled carbon
                    nanotubes. Appl Phys Lett 2009;95:083109.  DOI
               26.       Li Y, Kaneko T, Miyanaga S, Hatakeyama R. Synthesis and property characterization of c(69)n azafullerene encapsulated single-
                    walled carbon nanotubes. ACS Nano 2010;4:3522-6.  DOI  PubMed
               27.       Poudel YR, Li W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater Today
                    Phys 2018;7:7-34.  DOI
               28.       Eliseev AA, Kharlamova MV, Chernysheva MV, et al. Preparation and properties of single-walled nanotubes filled with inorganic
                    compounds. Russ Chem Rev 2009;78:833-54.  DOI
               29.       Yang Q, Hou P, Bai S, Wang M, Cheng H. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes.
                    Chem Phys Lett 2001;345:18-24.  DOI
               30.       Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature
                    1998;391:59-62.  DOI
               31.       Dujardin E, Ebbesen TW, Hiura H, Tanigaki K. Capillarity and wetting of carbon nanotubes. Science 1994;265:1850-2.  DOI
                    PubMed
               32.       Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S. Single crystal metals encapsulated in carbon nanoparticles. Science
                    1993;259:346-8.  DOI  PubMed
               33.       Guerret-piécourt C, Bouar YL, Lolseau A, Pascard H. Relation between metal electronic structure and morphology of metal
                    compounds inside carbon nanotubes. Nature 1994;372:761-5.  DOI
               34.       Hsu W, Li J, Terrones H, et al. Electrochemical production of low-melting metal nanowires. Chem Phys Lett 1999;301:159-66.  DOI
               35.       Hirahara K, Suenaga K, Bandow S, et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes.
                    Phys Rev Lett 2000;85:5384-7.  DOI  PubMed
               36.       Tobias G, Shao L, Salzmann CG, Huh Y, Green ML. Purification and opening of carbon nanotubes using steam. J Phys Chem B
                    2006;110:22318-22.  DOI  PubMed
               37.       Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for
                    filling. Nature 1993;362:522-5.  DOI
               38.       Tsang SC, Chen YK, Harris PJF, Green MLH. A simple chemical method of opening and filling carbon nanotubes. Nature
                    1994;372:159-62.  DOI
               39.       Hernadi K, Siska A, Thiên-nga L, Forró L, Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of
                    catalytically prepared carbon nanotubes. Solid State Ion 2001;141-142:203-9.  DOI
               40.       Wiśniewski M, Terzyk AP, Hattori Y, Kaneko K, Okino F, Kruszka B. Hydrothermal opening of multiwall carbon nanotube with
                    H O  solution. Chem Phys Lett 2009;482:316-9.  DOI
                     2  2
               41.       Ribeiro H, Schnitzler MC, da Silva WM, Santos AP. Purification of carbon nanotubes produced by the electric arc-discharge method.
                    Surf Interfaces 2021;26:101389.  DOI
               42.       Egemen E, Nirmalakhandan N, Trevizo C. Predicting surface tension of liquid organic solvents. Environ Sci Technol 2000;34:2596-
                    600.  DOI
               43.       Eliseev A, Yashina L, Kharlamova M, Kiselev N. One-dimensional crystals inside single-walled carbon nanotubes: growth, structure
                    and electronic properties. In: Electronic properties of carbon nanotubes. 2011.  DOI
               44.       Sloan J, Kirkland AI, Hutchison JL, Green ML. Structural characterization of atomically regulated nanocrystals formed within single-
                    walled carbon nanotubes using electron microscopy. ACC Chem Res 2002;35:1054-62.  DOI  PubMed
               45.       Wang D, Saleem MF, Javid M, et al. Formation of Sn filled CNTs nanocomposite: study of their magnetic, dielectric properties and
                    enhanced microwave absorption performance at gigahertz frequencies. Ceram Int 2022;48:21961-71.  DOI
               46.       Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 2013;4:2162.
                    DOI
               47.       Belandria E, Millot M, Broto J, et al. Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D
                    Tellurium. Carbon 2010;48:2566-72.  DOI
   56   57   58   59   60   61   62   63   64   65   66