Page 62 - Read Online
P. 62

Page 26 of 29        Teng et al. Microstructures 2023;3:2023019  https://dx.doi.org/10.20517/microstructures.2023.07

               48.       Kitaura R, Nakanishi R, Saito T, Yoshikawa H, Awaga K, Shinohara H. High-yield synthesis of ultrathin metal nanowires in carbon
                    nanotubes. Angew Chem Int Ed 2009;48:8298-302.  DOI  PubMed
               49.       Kharlamova MV. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon
                    nanotubes. J Mater Sci 2014;49:8402-11.  DOI
               50.       Stonemeyer S, Cain JD, Oh S, et al. Stabilization of NbTe , VTe  and TiTe  via nanotube encapsulation. J Am Chem Soc
                                                              3   3      3
                    2021;143:4563-8.  DOI  PubMed
               51.       Pham T, Oh S, Stetz P, et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science
                    2018;361:263-6.  DOI  PubMed
               52.       Kharlamova MV, Yashina LV, Lukashin AV. Comparison of modification of electronic properties of single-walled carbon nanotubes
                    filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 2013;112:297-304.  DOI
               53.       Kashtiban RJ, Patrick CE, Ramasse Q, Walton RI, Sloan J. Picoperovskites: the smallest conceivable isolated halide perovskite
                    structures formed within carbon nanotubes. Adv Mater 2023;35:e2208575.  DOI  PubMed
               54.       Yu WJ, Liu C, Zhang L, et al. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide
                    nanoparticles. Adv Sci 2016;3:1600113.  DOI  PubMed  PMC
               55.       Calatayud DG, Ge H, Kuganathan N, et al. Encapsulation of cadmium selenide nanocrystals in biocompatible nanotubes: DFT
                    calculations, X-ray diffraction investigations, and confocal fluorescence imaging. Chem Eur 2018;7:144-58.  DOI  PubMed  PMC
               56.       Norman LT, Biskupek J, Rance GA, Stoppiello CT, Kaiser U, Khlobystov AN. Synthesis of ultrathin rhenium disulfide nanoribbons
                    using nano test tubes. Nano Res 2022;15:1282-7.  DOI
               57.       Popple D, Dogan M, Hoang TV, et al. Charge-induced phase transition in encapsulated HfTe  nanoribbons. Phys Rev Mater
                                                                                    2
                    2023;7:L013001.  DOI
               58.       Wang Z, Zhao K, Li H, et al. Ultra-narrow WS  nanoribbons encapsulated in carbon nanotubes. J Mater Chem 2011;21:171-80.  DOI
                                                  2
               59.       Carter R, Suyetin M, Lister S, et al. Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal
                    oscillation in low-dimensional tin selenide crystals. Dalton Trans 2014;43:7391-9.  DOI  PubMed
               60.       Wang Z, Li H, Liu Z, et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS  inorganic nanoribbons encapsulated in quasi-
                                                                            2
                    1D carbon nanotubes. J Am Chem Soc 2010;132:13840-7.  DOI  PubMed
               61.       Koshino M, Niimi Y, Nakamura E, et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic
                    level. Nat Chem 2010;2:117-24.  DOI  PubMed
               62.       Simon F, Kuzmany H, Rauf H, et al. Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of
                    N@C60@SWCNT. Chem Phys Lett 2004;383:362-7.  DOI
               63.       Shimada T, Ohno Y, Okazaki T, et al. Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect
                    transistors. Phys E Low Dimens Syst Nanostruct 2004;21:1089-92.  DOI
               64.       Luzzi DE, Smith BW, Russo R, et al. Encapsulation of metallofullerenes and metallocenes in carbon nanotubes. In AIP Conference
                    Proceedings; 2001, pp. 622-6.  DOI
               65.       Suenaga K, Hirahara K, Bandow S, et al. Core-level spectroscopy on the valence state of encaged metal in metallofullerene-peapods.
                    In AIP Conference Proceedings; 2001, pp. 256-60.  DOI
               66.       Suenaga K, Taniguchi R, Shimada T, Okazaki T, Shinohara H, Iijima S. Evidence for the intramolecular motion of Gd atoms in a
                    Gd @C  nanopeapod. Nano Lett 2003;3:1395-8.  DOI
                      2  92
               67.       Kuzmany H, Pfeiffer R, Simon F. The growth of nanophases in the clean room inside single-wall carbon nanotubes. Synth Met
                    2005;155:690-3.  DOI
               68.       Zhong R, Tao J, Yang X, et al. Preparation of carbon nanotubes with high filling rate of copper nanoparticles. Microporous
                    Mesoporous Mater 2022;344:112231.  DOI
               69.       Lee J, Kim H, Kahng SJ, et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002;415:1005-8.
                    DOI  PubMed
               70.       Botos A, Biskupek J, Chamberlain TW, et al. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis:
                    sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J Am Chem Soc 2016;138:8175-83.  DOI
                    PubMed
               71.       Béjar L, Mejía AA, Parra C, et al. Analysis of Raman spectroscopy and SEM of carbon nanotubes obtain by CVD. Microsc
                    Microanal 2018;24:1092-3.  DOI
               72.       Caccamo MT, Mavilia G, Magazù S. Thermal investigations on carbon nanotubes by spectroscopic techniques.  Appl Sci
                    2020;10:8159.  DOI
               73.       Banhart F. Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J Mater Sci 2006;41:4505-11.
                    DOI
               74.       Oxley MP, Lupini AR, Pennycook SJ. Ultra-high resolution electron microscopy. Rep Prog Phys 2017;80:026101.  DOI  PubMed
               75.       Urban KW, Barthel J, Houben L, et al. Progress in atomic-resolution aberration corrected conventional transmission electron
                    microscopy (CTEM). Prog Mater Sci 2023;133:101037.  DOI
               76.       Guan L, Suenaga K, Shi Z, Gu Z, Iijima S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano
                    Lett 2007;7:1532-5.  DOI  PubMed
               77.       Qin J, Liao P, Si M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat
                    Electron 2020;3:141-7.  DOI
   57   58   59   60   61   62   63   64   65   66   67