Page 164 - Read Online
P. 164

Page 30 of 31        Chen et al. Microstructures 2023;3:2023025  https://dx.doi.org/10.20517/microstructures.2023.12

               144.      Krishnamurthy CB, Lori O, Elbaz L, Grinberg I. First-principles investigation of the formation of Pt nanorafts on a Mo C support and
                                                                                                2
                    their catalytic activity for oxygen reduction reaction. J Phys Chem Lett 2018;9:2229-34.  DOI  PubMed
               145.      Schweitzer NM, Schaidle JA, Ezekoye OK, Pan X, Linic S, Thompson LT. High activity carbide supported catalysts for water gas
                    shift. J Am Chem Soc 2011;133:2378-81.  DOI  PubMed
               146.      Zhang K, Yang W, Ma C, et al. A highly active, stable and synergistic Pt nanoparticles/Mo C nanotube catalyst for methanol electro-
                                                                               2
                    oxidation. NPG Asia Mater 2015;7:e153-e153.  DOI
               147.      Li Q, Ma Z, Sa R, et al. Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@Mo C-an important advanced
                                                                                         2
                    material for H  production. J Mater Chem A 2017;5:14658-72.  DOI
                             2
               148.      Huang X, Wang J, Gao J, Zhang Z, Gan LY, Xu H. Structural evolution and underlying mechanism of single-atom centers on Mo C
                                                                                                        2
                    (100) support during oxygen reduction reaction. ACS Appl Mater Interfaces 2021;13:17075-84.  DOI  PubMed
               149.      Zhang L, Yang T, Zang W, et al. Quasi-paired Pt atomic sites on Mo C promoting selective four-electron oxygen reduction. Adv Sci
                                                                 2
                    2021;8:e2101344.  DOI  PubMed  PMC
               150.      Gao W, Liu T, Zhang Z, Dou M, Wang F. Stabilization of Pt nanoparticles at the Ta O -TaC binary junction: an effective strategy to
                                                                          2  5
                    achieve high durability for oxygen reduction. J Mater Chem A 2020;8:5525-34.  DOI
               151.      Begum M, Yurukcu M, Yurtsever F, et al. Pt-Ni/WC alloy nanorods arrays as ORR catalyst for PEM fuel cells. ECS Trans
                    2017;80:919-25.  DOI
               152.      Yurtsever FM, Yurukcu M, Begum M, Watanabe F, Karabacak T. Stacked and core-shell Pt:Ni/WC nanorod array electrocatalyst for
                    enhanced oxygen reduction reaction in polymer electrolyte membrane fuel cells. ACS Appl Energy Mater 2018;1:6115-22.  DOI
               153.      Nabil Y, Cavaliere S, Harkness I, Sharman J, Jones D, Rozière J. Novel niobium carbide/carbon porous nanotube electrocatalyst
                    supports for proton exchange membrane fuel cell cathodes. J Power Sources 2017;363:20-6.  DOI
               154.      Stamatin SN, Skou EM. Pt/NbC-N electrocatalyst for use in proton exchange membrane fuel cells. ECS Trans 2013;58:1267-76.
                    DOI
               155.      Justin P, Charan PHK, Rao GR. Activated zirconium carbide promoted Pt/C electrocatalyst for oxygen reduction. Appl Catal B
                    Environ 2014;144:767-74.  DOI
               156.      Hamo ER, Rosen BA. Transition metal carbides as cathode supports for PEM fuel cells. Nano Res 2022;15:10218-33.  DOI
               157.      Wang Y, Wang M, Lu Z, Ma D, Jia Y. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T’-
                    MoS  with anchored transition metal single atoms. Nanoscale 2021;13:13390-400.  DOI
                       2
               158.      Logeshwaran N, Panneerselvam IR, Ramakrishnan S, et al. Quasihexagonal platinum nanodendrites decorated over CoS -N-doped
                                                                                                   2
                    reduced graphene oxide for electro-oxidation of C1-, C2-, and C3-type alcohols. Adv Sci 2022;9:e2105344.  DOI  PubMed  PMC
               159.      Bothra P, Pandey M, Pati SK. Size-selective electrocatalytic activity of (Pt) /MoS  for oxygen reduction reaction. Catal Sci Technol
                                                                     n   2
                    2016;6:6389-95.  DOI
               160.      Anwar MT, Yan X, Asghar MR, et al. MoS -rGO hybrid architecture as durable support for cathode catalyst in proton exchange
                                                 2
                    membrane fuel cells. Chinese J Catal 2019;40:1160-7.  DOI
               161.      Wei L, Ang EH, Yang Y, et al. Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air
                    batteries. J Power Sources 2020;477:228696.  DOI
               162.      Wang D, Song Y, Zhang H, Yan X, Guo J. Recent advances in transition metal borides for electrocatalytic oxygen evolution reaction.
                    J Electroanal Chem 2020;861:113953.  DOI
               163.      Cao S, Sun T, Li J, Li Q, Hou C, Sun Q. The cathode catalysts of hydrogen fuel cell: from laboratory toward practical application.
                    Nano Res 2023;16:4365-80.  DOI
               164.      Kumar S, Yoyakki A, Pandikassala A, Soni R, Kurungot S. Pt-anchored-zirconium phosphate nanoplates as high-durable carbon-free
                    oxygen reduction reaction electrocatalyst for PEM fuel cell applications. Adv Sustain Syst 2023;7:2200330.  DOI
               165.      Yin S, Mu S, Lv H, Cheng N, Pan M, Fu Z. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and
                    polymer stabilization. Appl Catal B Environ 2010;93:233-40.  DOI
               166.      Yin S, Mu S, Pan M, Fu Z. A highly stable TiB -supported Pt catalyst for polymer electrolyte membrane fuel cells. J Power Sources
                                                   2
                    2011;196:7931-6.  DOI
               167.      Huang Z, Lin R, Fan R, Fan Q, Ma J. Effect of TiB  pretreatment on Pt/TiB  catalyst performance. Electrochim Acta 2014;139:48-53.
                                                     2
                                                                    2
                    DOI
               168.      Zhang C, Ma B, Zhou Y, Wang C. Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions.
                    J Electroanal Chem 2020;865:114142.  DOI
               169.      Ponnada S, Kiai MS, Gorle DB, et al. Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes. Catal Sci
                    Technol 2022;12:4413-41.  DOI
               170.      Peera SG, Liu C, Sahu AK, et al. Recent advances on MXene-based electrocatalysts toward oxygen reduction reaction: a focused
                    review. Adv Mater Interfaces 2021;8:2100975.  DOI
               171.      Huang X, Song M, Zhang J, et al. Investigation of MXenes as oxygen reduction electrocatalyst for selective H O  generation. Nano
                                                                                            2
                                                                                              2
                    Res 2022;15:3927-32.  DOI
               172.      Xu C, Fan C, Zhang X, et al. MXene (Ti C T ) and carbon nanotube hybrid-supported platinum catalysts for the high-performance
                                               3  2  x
                    oxygen reduction reaction in PEMFC. ACS Appl Mater Interfaces 2020;12:19539-46.  DOI
               173.      Yang X, Zhang Y, Fu Z, et al. Tailoring the electronic structure of transition metals by the V C MXene support: excellent oxygen
                                                                                 2
                    reduction performance triggered by metal-support interactions. ACS Appl Mater Interfaces 2020;12:28206-16.  DOI
   159   160   161   162   163   164   165   166   167   168   169