Page 160 - Read Online
P. 160

Page 26 of 31        Chen et al. Microstructures 2023;3:2023025  https://dx.doi.org/10.20517/microstructures.2023.12

                    manipulation. Angew Chem Int Ed 2023;62:e202212278.  DOI
               28.       Li Y, Zhang Y, Qian K, Huang W. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal
                    inverse catalysts. ACS Catal 2022;12:1268-87.  DOI
               29.       Wu B, Meng H, Morales DM, et al. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis,
                    characterization, and activity of nitrogen sites. Adv Funct Mater 2022;32:2204137.  DOI
               30.       Bai J, Yang L, Jin Z, Ge J, Xing W. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. Chinese J Catal
                    2022;43:1444-58.  DOI
               31.       Wang J, Kong H, Zhang J, Hao Y, Shao Z, Ciucci F. Carbon-based electrocatalysts for sustainable energy applications. Prog Mater
                    Sci 2021;116:100717.  DOI
               32.       Yang X, Priest C, Hou Y, Wu G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction:
                    opportunities and challenges. SusMat 2022;2:569-90.  DOI
               33.       Tian X, Lu XF, Xia BY, Lou XW. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies.
                    Joule 2020;4:45-68.  DOI
               34.       Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B
                    2004;108:17886-92.  DOI
               35.       Tian X, Zhao X, Su YQ, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells.
                    Science 2019;366:850-6.  DOI
               36.       Ando F, Gunji T, Tanabe T, et al. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via
                    transition metal oxide support interactions. ACS Catal 2021;11:9317-32.  DOI
               37.       Tauster SJ, Fung SC, Garten RL. ChemInform abstract: strong metal-support interactions. group 8 noble metals supported
                    on Titanium dioxide. Chemischer Informationsdienst 1978;9:170-5.  DOI
               38.       Tauster S. Strong metal-support interactions: occurrence among the binary oxides of groups IIA-VB. J Catal 1978;55:29-35.  DOI
               39.       Beck A, Huang X, Artiglia L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support
                    interaction. Nat Commun 2020;11:3220.  DOI  PubMed  PMC
               40.       Wang X, Beck A, van Bokhoven JA, Palagin D. Thermodynamic insights into strong metal-support interaction of transition metal
                    nanoparticles on titania: simple descriptors for complex chemistry. J Mater Chem A 2021;9:4044-54.  DOI
               41.       Zhao  W,  Zhou  D,  Han  S,  et  al.  Metal-support  interaction  in  Pt/TiO :  formation  of  surface  Pt-Ti  alloy.  J  Phys  Chem  C
                                                                     2
                    2021;125:10386-96.  DOI
               42.       Du X, Tang H, Qiao B. Oxidative strong metal-support interactions. Catalysts 2021;11:896.  DOI
               43.       Macino M, Barnes AJ, Althahban SM, et al. Tuning of catalytic sites in Pt/TiO  catalysts for the chemoselective hydrogenation of 3-
                                                                       2
                    nitrostyrene. Nat Catal 2019;2:873-81.  DOI
               44.       Kennedy RM, Crosby LA, Ding K, et al. Replication of SMSI via ALD: TiO  overcoats increase Pt-catalyzed acrolein hydrogenation
                                                                     2
                    selectivity. Catal Lett 2018;148:2223-32.  DOI
               45.       Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. Electronic effect of ruthenium nanoparticles on efficient reductive amination
                    of carbonyl compounds. J Am Chem Soc 2017;139:11493-9.  DOI  PubMed
               46.       Zhang L, Persaud R, Theodore EM. Ultrathin metal films on a metal oxide surface: growth of Au on TiO  (110). Phys Rev B
                                                                                            2
                    1997;56:10549-57.  DOI
               47.       Gubó R, Yim CM, Allan M, Pang CL, Berkó A, Thornton G. Variation of SMSI with the Au:Pd ratio of bimetallic nanoparticles on
                    TiO  (110). Top Catal 2018;61:308-17.  DOI  PubMed  PMC
                       2
               48.       Fu Q, Wagner T, Olliges S, Carstanjen HD. Metal-oxide interfacial reactions: encapsulation of Pd on TiO  (110). J Phys Chem B
                                                                                          2
                    2005;109:944-51.  DOI  PubMed
               49.       Liu X, Liu MH, Luo YC, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J
                    Am Chem Soc 2012;134:10251-8.  DOI
               50.       Tang H, Wei J, Liu F, et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc
                    2016;138:56-9.  DOI
               51.       Tang H, Su Y, Guo Y, et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem
                    Sci 2018;9:6679-84.  DOI  PubMed  PMC
               52.       Liu S, Xu W, Niu Y, et al. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat
                    Commun 2019;10:5790.  DOI  PubMed  PMC
               53.       Liu S, Qi H, Zhou J, et al. Encapsulation of platinum by titania under an oxidative atmosphere: contrary to classical strong metal-
                    support interactions. ACS Catal 2021;11:6081-90.  DOI
               54.       Matsubu JC, Zhang S, DeRita L, et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat
                    Chem 2017;9:120-7.  DOI
               55.       Wang X, Liu Y, Peng X, Lin B, Cao Y, Jiang L. Sacrificial adsorbate strategy achieved strong metal-support interaction of stable Cu
                    nanocatalysts. ACS Appl Energy Mater 2018;1:1408-14.  DOI
               56.       Xin H, Lin L, Li R, et al. Overturning CO  hydrogenation selectivity with high activity via reaction-induced strong metal-support
                                                2
                    interactions. J Am Chem Soc 2022;144:4874-82.  DOI
               57.       Li D, Xu F, Tang X, et al. Induced activation of the commercial Cu/ZnO/Al O  catalyst for the steam reforming of methanol. Nat
                                                                        3
                                                                      2
                    Catal 2022;5:99-108.  DOI
   155   156   157   158   159   160   161   162   163   164   165