Page 159 - Read Online
P. 159

Chen et al. Microstructures 2023;3:2023025  https://dx.doi.org/10.20517/microstructures.2023.12  Page 25 of 31

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Li C, Tan H, Lin J, et al. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction
                    reaction. Nano Today 2018;21:91-105.  DOI
               2.       Chalgin A, Song C, Tao P, Shang W, Deng T, Wu J. Effect of supporting materials on the electrocatalytic activity, stability and
                    selectivity of noble metal-based catalysts for oxygen reduction and hydrogen evolution reactions. Prog Nat Sci Mater 2020;30:289-
                    97.  DOI
               3.       Wu G, More KL, Johnston CM, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron,
                    and cobalt. Science 2011;332:443-7.  DOI  PubMed
               4.       Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts
                    for oxygen reduction reactions to fuel cell vehicles. Nat Nanotechnol 2021;16:140-7.  DOI  PubMed
               5.       Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater
                    2019;31:e1802234.  DOI  PubMed
               6.       Miao Z, Wang X, Zhao Z, et al. Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel
                    cells through M-N bond length and coordination regulation. Adv Mater 2021;33:e2006613.  DOI
               7.       Li S, Hao X, Abudula A, Guan G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current
                    status and perspectives. J Mater Chem A 2019;7:18674-707.  DOI
               8.       He Y, Liu S, Priest C, Shi Q, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design,
                    electrode performance, and durability improvement. Chem Soc Rev 2020;49:3484-524.  DOI
               9.       Wu Z, Zhang H, Chen C, Li G, Han Y. Applications of in situ electron microscopy in oxygen electrocatalysis. Microstructures
                    2022;2:2022002.  DOI
               10.       Frey H, Beck A, Huang X, van Bokhoven JA, Willinger MG. Dynamic interplay between metal nanoparticles and oxide support
                    under redox conditions. Science 2022;376:982-7.  DOI  PubMed
               11.       Zhang W, Chang J, Wang G, et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for
                    zinc-air batteries. Energy Environ Sci 2022;15:1573-84.  DOI
               12.       Miao Z, Li S, Priest C, Wang T, Wu G, Li Q. Effective approaches for designing stable M-N /C oxygen-reduction catalysts for
                                                                                   x
                    proton-exchange-membrane fuel cells. Adv Mater 2022;34:e2200595.  DOI
               13.       Cheng N, Norouzi Banis M, Liu J, et al. Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly
                    stable electrocatalysts. Energy Environ Sci 2015;8:1450-5.  DOI
               14.       Yang Y, Wu D, Li R, et al. Engineering the strong metal support interaction of titanium nitride and ruthenium nanorods for effective
                    hydrogen evolution reaction. Appl Catal B Environ 2022;317:121796.  DOI
               15.       Yan D, Chen J, Jia H. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst.
                    Angew Chem Int Ed 2020;59:13562-7.  DOI
               16.       Yang H, Lu N, Zhang J, et al. Ultra-low single-atom Pt on g-C N  for electrochemical hydrogen peroxide production. Carbon Energy
                                                            3  4
                    2023;2:1-12.  DOI
               17.       Ling L, Liu W, Chen S, Hu X, Jiang H. MOF templated nitrogen doped carbon stabilized Pt-Co bimetallic nanoparticles: low Pt
                    content and robust activity toward electrocatalytic oxygen reduction reaction. ACS Appl Nano Mater 2018;1:3331-8.  DOI
               18.       Zhou M, Liu M, Miao Q, Shui H, Xu Q. Synergetic Pt atoms and nanoparticles anchored in standing carbon-derived from covalent
                    organic frameworks for catalyzing ORR. Adv Mater Interfaces 2022;9:2201263.  DOI
               19.       Zhai L, Yang S, Yang X, et al. Conjugated covalent organic frameworks as platinum nanoparticle supports for catalyzing the oxygen
                    reduction reaction. Chem Mater 2020;32:9747-52.  DOI
               20.       Yu X, Guo J, Li B, et al. Sub-nanometer Pt clusters on defective NiFe LDH nanosheets as trifunctional electrocatalysts for water
                    splitting and rechargeable hybrid sodium-air batteries. ACS Appl Mater Interfaces 2021;13:26891-903.  DOI
               21.       Rao P, Deng Y, Fan W, et al. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat Commun
                    2022;13:5071.  DOI  PubMed  PMC
               22.       Chang F, Xiao M, Miao R, et al. Copper-Based catalysts for electrochemical carbon dioxide reduction to multicarbon products.
                    Electrochem Energy Rev 2022;5:139-74.  DOI
               23.       Wu D, Baaziz W, Gu B, et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective
                    hydrogenation reactions. Nat Catal 2021;4:595-606.  DOI
               24.       Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and
                    selectivity. Nat Catal 2019;2:955-70.  DOI
               25.       Wang H, Wang L, Xiao F. New routes for the construction of strong metal-support interactions. Sci China Chem 2022;65:2051-7.
                    DOI
               26.       Luo Z, Zhao G, Pan H, Sun W. Strong metal-support interaction in heterogeneous catalysts. Adv Energy Mater 2022;12:2201395.
                    DOI
               27.       Pu T, Zhang W, Zhu M. Engineering heterogeneous catalysis with strong metal-support interactions: characterization, theory and
   154   155   156   157   158   159   160   161   162   163   164