Page 130 - Read Online
P. 130

Li et al. Microstructures 2023;3:2023024  https://dx.doi.org/10.20517/microstructures.2023.09  Page 19 of 20

               59.       Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020;14:1227-35.  DOI  PubMed
               60.       Chang X, Wang T, Gong J. CO  photo-reduction: insights into CO  activation and reaction on surfaces of photocatalysts. Energy
                                                                2
                                         2
                    Environ Sci 2016;9:2177-96.  DOI
               61.       Peng S, Zeng X, Li Y. Titanate nanotube modified with different nickel precursors for enhanced Eosin Y-sensitized photocatalytic
                    hydrogen evolution. Int J Hydrog Energy 2015;40:6038-49.  DOI
               62.       Zhang W, Li Y, Zeng X, Peng S. Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen
                    evolution via dye sensitization. Sci Rep 2015;5:10589.  DOI  PubMed  PMC
               63.       Li Y, Xiang Y, Peng S, Wang X, Zhou L. Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-
                    light photoelectrochemical H  generation. Electrochim Acta 2013;87:794-800.  DOI
                                       2
               64.       Yin G, Nishikawa M, Nosaka Y, et al. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate
                    nanosheets. ACS Nano 2015;9:2111-9.  DOI
               65.       Park D, Jeong Y, Lee J, Lee J, Moon S. Interfacial charge-transfer loss in dye-sensitized solar cells. J Phys Chem C 2013;117:2734-9.
                    DOI
               66.       Irie H, Miura S, Kamiya K, Hashimoto K. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO  and WO
                                                                                                   2     3
                    photocatalysts. Chem Phys Lett 2008;457:202-5.  DOI
               67.       Irie H, Kamiya K, Shibanuma T, et al. Visible light-sensitive Cu(II)-grafted TiO  photocatalysts: activities and X-ray absorption fine
                                                                        2
                    structure analyses. J Phys Chem C 2009;113:10761-6.  DOI
               68.       Yu H, Irie H, Shimodaira Y, et al. An efficient visible-light-sensitive Fe(III)-grafted TiO  photocatalyst. J Phys Chem C
                                                                                   2
                    2010;114:16481-7.  DOI
               69.       Liu M, Qiu X, Hashimoto K, Miyauchi M. Cu(II) nanocluster-grafted, Nb-doped TiO  as an efficient visible-light-sensitive
                                                                               2
                    photocatalyst based on energy-level matching between surface and bulk states. J Mater Chem A 2014;2:13571-9.  DOI
               70.       Miyauchi M, Irie H, Liu M, et al. Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor
                    environmental remediation. J Phys Chem Lett 2016;7:75-84.  DOI
               71.       Kong L, Wang C, Wan F, Zheng H, Zhang X. Synergistic effect of surface self-doping and Fe species-grafting for enhanced
                    photocatalytic activity of TiO  under visible-light. Appl Surf Sci 2017;396:26-35.  DOI
                                       2
               72.       Ji Y, Luo Y. New Mechanism for photocatalytic reduction of CO  on the anatase TiO  (101) surface: the essential role of oxygen
                                                               2             2
                    vacancy. J Am Chem Soc 2016;138:15896-902.  DOI  PubMed
               73.       Nolan M, Iwaszuk A, Gray KA. Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and
                    supported TiO  nanoclusters. J Phys Chem C 2014;118:27890-900.  DOI
                             2
               74.       Hurum D, Agrios A, Crist S, Gray K, Rajh T, Thurnauer M. Probing reaction mechanisms in mixed phase TiO  by EPR. J Electron
                                                                                            2
                    Spectros Relat Phenomena 2006;150:155-63.  DOI
               75.       Li G, Gray KA. The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO -based nanocomposite
                                                                                           2
                    materials. Chem Phys 2007;339:173-87.  DOI
               76.       Pacchioni G. Oxygen vacancy: the invisible agent on oxide surfaces. Chemphyschem 2003;4:1041-7.  DOI  PubMed
               77.       Liu M, Qiu X, Miyauchi M, Hashimoto K. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient
                    visible-light photocatalysts. J Am Chem Soc 2013;135:10064-72.  DOI  PubMed
               78.       Liu M, Sunada K, Hashimoto K, Miyauchi M. Visible-light sensitive Cu(II)-TiO  with sustained anti-viral activity for efficient indoor
                                                                        2
                    environmental remediation. J Mater Chem A 2015;3:17312-9.  DOI
               79.       Liu M, Inde R, Nishikawa M, et al. Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts. ACS Nano
                    2014;8:7229-38.  DOI
               80.       Cheng L, Li B, Yin H, Fan J, Xiang Q. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic
                    CO  reduction. J Mater Sci Technol 2022;118:54-63.  DOI
                      2
               81.       Billo T, Fu FY, Raghunath P, et al. Ni-nanocluster modified black TiO  with dual active sites for selective photocatalytic CO
                                                                    2                                    2
                    reduction. Small 2018;14:1702928.  DOI
               82.       Li Y, Wang C, Song M, Li D, Zhang X, Liu Y. TiO /CoO  photocatalyst sparkles in photothermocatalytic reduction of CO  with
                                                           x
                                                      2-x
                                                                                                      2
                    H O steam. Appl Catal B Environ 2019;243:760-70.  DOI
                     2
               83.       Hou T, Luo N, Cui Y, et al. Selective reduction of CO  to CO under visible light by controlling coordination structures of CeO -S/
                                                        2
                                                                                                       x
                    ZnIn S  hybrid catalysts. Appl Catal B Environ 2019;245:262-70.  DOI
                       2 4
               84.       Mrowetz M, Villa A, Prati L, Selli E. Effects of Au nanoparticles on TiO  in the photocatalytic degradation of an azo dye. Gold Bull
                                                                   2
                    2007;40:154-60.  DOI
               85.       Yadav A, Li Y, Liao TW, et al. Enhanced methanol electro-oxidation activity of nanoclustered gold. Small 2021;17:e2004541.  DOI
               86.       Liao TW, Verbruggen SW, Claes N, et al. TiO  films modified with Au nanoclusters as self-cleaning surfaces under visible light.
                                                   2
                    Nanomaterials 2018;8:30.  DOI  PubMed  PMC
               87.       Li Y, Yang Y, Chen G, Fan J, Xiang Q. Au cluster anchored on TiO /Ti C  hybrid composites for efficient photocatalytic CO
                                                                   2  3  2                               2
                    reduction. Rare Met 2022;41:3045-59.  DOI
               88.       Xiao FX, Zeng Z, Hsu SH, Hung SF, Chen HM, Liu B. Light-induced in situ transformation of metal clusters to metal nanocrystals
                    for photocatalysis. ACS Appl Mater Interfaces 2015;7:28105-9.  DOI  PubMed
               89.       Liu S, Xu YJ. Photo-induced transformation process at gold clusters-semiconductor interface: implications for the complexity of gold
                    clusters-based photocatalysis. Sci Rep 2016;6:22742.  DOI
   125   126   127   128   129   130   131   132   133   134   135