Page 128 - Read Online
P. 128

Li et al. Microstructures 2023;3:2023024  https://dx.doi.org/10.20517/microstructures.2023.09  Page 17 of 20

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Arneth A, Sitch S, Pongratz J, et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than
                    assumed. Nat Geosci 2017;10:79-84.  DOI
               2.       Liu LX, Fu J, Jiang LP, Zhang JR, Zhu W, Lin Y. Highly efficient photoelectrochemical reduction of CO  at low applied voltage
                                                                                          2
                    using 3D Co-Pi/BiVO /SnO  nanosheet array photoanodes. ACS Appl Mater Interfaces 2019;11:26024-31.  DOI
                                  4
                                      2
               3.       Yuan Y, Lu J. Demanding energy from carbon. Carbon Energy 2019;1:8-12.  DOI
               4.       Liu J, Fu J, Zhou Y, Zhu W, Jiang LP, Lin Y. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-
                    efficiency conversion of CO  to multicarbon products. Nano Lett 2020;20:4823-8.  DOI
                                      2
               5.       Liu J, Cai Y, Song R, et al. Recent progress on single-atom catalysts for CO  electroreduction. Mater Today 2021;48:95-114.  DOI
                                                                     2
               6.       Salemdeeb R, Saint R, Clark W, Lenaghan M, Pratt K, Millar F. A pragmatic and industry-oriented framework for data quality
                    assessment of environmental footprint tools. Resour Environ Sustain 2021;3:100019.  DOI
               7.       Dou X, Wang Y, Ciais P, et al. Near-real-time global gridded daily CO  emissions. Innovation 2022;3:100182.  DOI  PubMed  PMC
                                                                 2
               8.       Du H, Liu LX, Li P, et al. Enriching reaction intermediates in multishell structured copper catalysts for boosted propanol
                    electrosynthesis from carbon monoxide. ACS Nano 2023;17:8663-70.  DOI
               9.       Zhao Q, Yu P, Mahendran R, et al. Global climate change and human health: pathways and possible solutions. Eco-Environ Health
                    2022;1:53-62.  DOI
               10.       Fu J, Li P, Lin Y, et al. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ Health
                    2022;1:259-79.  DOI
               11.       Li K, Cai Y, Yang X, et al. H S Involved photocatalytic system: a novel syngas production strategy by boosting the photoreduction of
                                       2
                    CO  while recovering hydrogen from the environmental toxicant. Adv Funct Mater 2022;32:2113002.  DOI
                      2
               12.       Yang X, Li K, Wang G, et al. 2D Catalysts for CO  photoreduction: discussing structure efficiency strategies and prospects for scaled
                                                     2
                    production based on current progress. Chemistry 2022;28:e202201881.  DOI
               13.       Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor-based photocatalytic CO  reduction: achievements, challenges, and
                                                                             2
                    opportunities. Adv Mater 2018;30:1704649.  DOI  PubMed
               14.       Fu J, Jiang K, Qiu X, Yu J, Liu M. Product selectivity of photocatalytic CO  reduction reactions. Mater Today 2020;32:222-43.  DOI
                                                                    2
               15.       Schäppi R, Rutz D, Dähler F, et al. Drop-in fuels from sunlight and air. Nature 2022;601:63-8.  DOI
               16.       Tian J, Zhong K, Zhu X, et al. Highly exposed active sites of Au nanoclusters for photocatalytic CO  reduction. Chem Eng J
                                                                                         2
                    2023;451:138392.  DOI
               17.       Yang J, Yang Z, Yang K, et al. Indium-based ternary metal sulfide for photocatalytic CO  reduction application. Chin J Catal
                                                                                 2
                    2023;44:67-95.  DOI
               18.       Zhu L, Hu F, Sun B, Gu S, Gao T, Zhou G. Recent advances on multivariate MOFs for photocatalytic CO  reduction and H
                                                                                             2           2
                    evolution. Adv Sustain Syst 2023;7:2200394.  DOI
               19.       Zhu Z, Xuan Y, Liu X, Zhu Q. Revealing the stochastic kinetics evolution of photocatalytic CO  reduction. Nanoscale 2023;15:730-
                                                                                  2
                    41.  DOI
               20.       Zuo Q, Cui R, Wang L, et al. High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO   2
                    reduction. Sci China Chem 2023;66:570-7.  DOI
               21.       Liu H, Zhu Y, Ma J, Zhang Z, Hu W. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical
                    CO  reduction. Adv Funct Mater 2020;30:1910534.  DOI
                      2
               22.       He L, Yuan J, Xia N, et al. Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters. J
                    Am Chem Soc 2018;140:3487-90.  DOI
               23.       Bootharaju MS, Baek W, Lee S, Chang H, Kim J, Hyeon T. Magic-sized stoichiometric II-VI nanoclusters. Small 2021;17:e2002067.
                    DOI
               24.       Busatto S, de Mello Donega C. Magic-size semiconductor nanostructures: where does the magic come from? ACS Mater Au
                    2022;2:237-49.  DOI  PubMed  PMC
               25.       Wang Y, Zhou Y, Zhang Y, Buhro WE. Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg Chem
                    2015;54:1165-77.  DOI
               26.       Kurashige W, Kumazawa R, Ishii D, et al. Au -loaded BaLa Ti O  water-splitting photocatalyst with enhanced activity and
                                                    25        4  4  15
                    durability produced using new chromium oxide shell formation method. J Phys Chem C 2018;122:13669-81.  DOI
               27.       Gautam A, Gore PM, Kandasubramanian B. Nanocluster materials in photosynthetic machines. Chem Eng J 2020;385:123951.  DOI
               28.       Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO  reduction on copper in aqueous
                                                                                   2
                    electrolyte. Chem Rev 2019;119:7610-72.  DOI
   123   124   125   126   127   128   129   130   131   132   133