Page 129 - Read Online
P. 129

Page 18 of 20           Li et al. Microstructures 2023;3:2023024  https://dx.doi.org/10.20517/microstructures.2023.09

               29.       Shoji S, Yin G, Nishikawa M, Atarashi D, Sakai E, Miyauchi M. Photocatalytic reduction of CO  by CuO nanocluster loaded SrTiO   3
                                                                                  2
                    nanorod thin film. Chem Phys Lett 2016;658:309-14.  DOI
               30.       Gao Y, Sun L, Bian J, Zhang Z, Li Z, Jing L. Accelerated charge transfer of g-C N /BiVO  Z-scheme 2D heterojunctions by
                                                                                  4
                                                                              4
                                                                            3
                    controllably introducing phosphate bridges and Ag nanocluster co-catalysts for selective CO  photoreduction to CO. Appl Surf Sci
                                                                                 2
                    2023;610:155360.  DOI
               31.       Bo Y, Du P, Li H, et al. Bridging Au nanoclusters with ultrathin LDH nanosheets via ligands for enhanced charge transfer in
                    photocatalytic CO  reduction. Appl Catal B Environ 2023;330:122667.  DOI
                                2
               32.       Chen J, Zhang QF, Bonaccorso TA, Williard PG, Wang LS. Controlling gold nanoclusters by diphospine ligands. J Am Chem Soc
                    2014;136:92-5.  DOI
               33.       Zhu Q, Huang X, Zeng Y, et al. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters.
                    Nanoscale Adv 2021;3:6330-41.  DOI
               34.       Liu L, Corma A. Metal Catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev
                    2018;118:4981-5079.  DOI  PubMed  PMC
               35.       Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev
                    2017;117:8208-71.  DOI  PubMed
               36.       Lu H, Chen B, Li Y, et al. Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters. Chem
                    Commun 2022;58:2395-8.  DOI
               37.       Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N. Recent advances in the synthesis and catalytic applications of ligand-protected,
                    atomically precise metal nanoclusters. Coord Chem Rev 2016;322:1-29.  DOI
               38.       Chai OJH, Liu Z, Chen T, Xie J. Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications.
                    Nanoscale 2019;11:20437-48.  DOI
               39.       Sun Y, Cai X, Hu W, Liu X, Zhu Y. Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters.
                    Sci China Chem 2021;64:1065-75.  DOI
               40.       Wu J, Xia W, Lan M, et al. Artificial photosynthetic assemblies constructed by the self-assembly of synthetic building blocks for
                    enhanced photocatalytic hydrogen evolution. J Mater Chem A 2020;8:21690-9.  DOI
               41.       Yao Q, Chen T, Yuan X, Xie J. Toward total synthesis of thiolate-protected metal nanoclusters. ACC Chem Res 2018;51:1338-48.
                    DOI
               42.       Luo Z, Nachammai V, Zhang B, et al. Toward understanding the growth mechanism: tracing all stable intermediate species from
                    reduction of Au(I)-thiolate complexes to evolution of Au  nanoclusters. J Am Chem Soc 2014;136:10577-80.  DOI
                                                        25
               43.       Yao Q, Yuan X, Fung V, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat Commun
                    2017;8:927.  DOI  PubMed  PMC
               44.       Wang S, Li Q, Kang X, Zhu M. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. ACC
                    Chem Res 2018;51:2784-92.  DOI
               45.       Li Y, Zhou M, Jin R. Programmable metal nanoclusters with atomic precision. Adv Mater 2021;33:e2006591.  DOI
               46.       Li G, Jin R. Atomically precise gold nanoclusters as new model catalysts. ACC Chem Res 2013;46:1749-58.  DOI
               47.       Zhou M, Higaki T, Li Y, et al. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold
                    nanoclusters. J Am Chem Soc 2019;141:19754-64.  DOI
               48.       Pan H, Heagy MD. Photons to formate-a review on photocatalytic reduction of CO  to formic acid. Nanomaterials 2020;10:2422.
                                                                           2
                    DOI  PubMed  PMC
               49.       Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO  surfaces: principles, mechanisms, and selected results. Chem Rev
                                                           2
                    1995;95:735-58.  DOI
               50.       Habisreutinger SN, Schmidt-mende L, Stolarczyk JK. Photokatalytische reduktion von CO  an TiO  und anderen halbleitern. Angew
                                                                               2    2
                    Chem Int Ed 2013;125:7516-57.  DOI
               51.       Yan J, Teo BK, Zheng N. Surface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface
                    reactivity and catalysis. ACC Chem Res 2018;51:3084-93.  DOI  PubMed
               52.       Hou B, Kim B, Lee HKH, et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and
                    concentrated irradiance. Adv Funct Mater 2020;30:2004563.  DOI
               53.       Guo K, Zhu X, Peng L, et al. Boosting photocatalytic CO  reduction over a covalent organic framework decorated with ruthenium
                                                          2
                    nanoparticles. Chem Eng J 2021;405:127011.  DOI
               54.       Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper
                    surfaces. Energy Environ Sci 2012;5:7050.  DOI
               55.       Zhou M, Wang S, Yang P, Huang C, Wang X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for
                    photocatalytic reduction of CO . ACS Catal 2018;8:4928-36.  DOI
                                        2
               56.       Nguyen D, Nguyen C, Do T. Rational one-step synthesis of cobalt clusters embedded-graphitic carbon nitrides for the efficient
                    photocatalytic CO  reduction under ambient conditions. J Catal 2020;392:88-96.  DOI
                                2
               57.       Hansen HA, Varley JB, Peterson AA, Nørskov JK. Understanding trends in the electrocatalytic activity of metals and enzymes for
                    CO  reduction to CO. J Phys Chem Lett 2013;4:388-92.  DOI
                      2
               58.       Rosen BA, Salehi-Khojin A, Thorson MR, et al. Ionic liquid-mediated selective conversion of CO  to CO at low overpotentials.
                                                                                      2
                    Science 2011;334:643-4.  DOI
   124   125   126   127   128   129   130   131   132   133   134