Page 62 - Read Online
P. 62

Page 22 of 25     Dela Cruz et al. Microstructures 2023;3:2023012  https://dx.doi.org/10.20517/microstructures.2022.33

                    biodegradable medical implants. Metall Mat Trans A 2018;49:1006-13.  DOI
               17.       Prokoshkin S, Pustov Y, Zhukova Y, et al. Effect of thermomechanical treatment on structure and functional fatigue characteristics of
                    biodegradable Fe-30Mn-5Si(wt %) shape memory alloy. Materials 2021;14:3327.  DOI  PubMed  PMC
               18.       Babacan N, Kochta F, Hoffmann V, et al. Effect of silver additions on the microstructure, mechanical properties and corrosion
                    behavior of biodegradable Fe-30Mn-6Si. Mater Today Commun 2021;28:102689.  DOI
               19.       Wang Y, Venezuela J, Dargusch M. Biodegradable shape memory alloys: progress and prospects. Biomaterials 2021;279:121215.
                    DOI  PubMed
               20.       Del-río L, Nó M, Sota A, et al. Internal friction associated with ε martensite in shape memory steels produced by casting route and
                    through additive manufacturing: influence of thermal cycling on the martensitic transformation. J Alloys Compd 2022;919:165806.
                    DOI
               21.       Ewald FC, Brenne F, Gustmann T, Vollmer M, Krooß P, Niendorf T. Laser powder bed fusion processing of Fe-Mn-Al-Ni shape
                    memory alloy-on the effect of elevated platform temperatures. Metals 2021;11:185.  DOI
               22.       Ferretto I, Kim D, Della Ventura N, Shahverdi M, Lee W, Leinenbach C. Laser powder bed fusion of a Fe-Mn-Si shape memory
                    alloy. Addit Manuf 2021;46:102071.  DOI
               23.       Kim D, Ferretto I, Jeon JB, Leinenbach C, Lee W. Formation of metastable bcc-δ phase and its transformation to fcc-γ in laser
                    powder bed fusion of Fe-Mn-Si shape memory alloy. J Mater Res Technol 2021;14:2782-8.  DOI
               24.       Kim D, Ferretto I, Kim W, Leinenbach C, Lee W. Effect of post-heat treatment conditions on shape memory property in 4D printed
                    Fe-17Mn-5Si-10Cr-4Ni shape memory alloy. Mater Sci Eng A 2022;852:143689.  DOI
               25.       Kim D, Ferretto I, Leinenbach C, Lee W. 3D and 4D printing of complex structures of Fe Mn Si-based shape memory alloy using
                    laser powder bed fusion. Adv Mater Int 2022;9:2200171.  DOI
               26.       Niendorf T, Brenne F, Krooß P, et al. Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy
                    processed by selective laser melting. Metall Mat Trans A 2016;47:2569-73.  DOI
               27.       Patriarca L, Abuzaid W, Carlucci G, Belelli F, Casati R. Pseudoelasticity in FeMnNiAl shape memory alloy lattice structures
                    produced by Laser Powder Bed Fusion. Mater Lett 2021;302:130349.  DOI
               28.       Ferretto I, Borzì A, Kim D, et al. Control of microstructure and shape memory properties of a Fe-Mn-Si-based shape memory alloy
                    during laser powder bed fusion. Addit Manuf Lett 2022;3:100091.  DOI
               29.       Niendorf T, Brenne F, Hoyer P, et al. Processing of new materials by additive manufacturing: iron-based alloys containing silver for
                    biomedical applications. Metall Mat Trans A 2015;46:2829-33.  DOI
               30.       Wiesener M, Peters K, Taube A, et al. Corrosion properties of bioresorbable FeMn-Ag alloys prepared by selective laser melting.
                    Mater Corros 2017;68:1028-36.  DOI
               31.       Mosallanejad MH, Niroumand B, Aversa A, Saboori A. In-situ alloying in laser-based additive manufacturing processes: a critical
                    review. J Alloys Compd 2021;872:159567.  DOI
               32.       Carter LN, Martin C, Withers PJ, Attallah MM. The influence of the laser scan strategy on grain structure and cracking behaviour in
                    SLM powder-bed fabricated nickel superalloy. J Alloys Compd 2014;615:338-47.  DOI
               33.       Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci 2007;253:8064-9.  DOI
               34.       Krauss H, Zaeh M. Investigations on manufacturability and process reliability of selective laser melting. Phys Procedia 2013;41:815-
                    22.  DOI
               35.       Yan X, Chang C, Dong D, et al. Microstructure and mechanical properties of pure copper manufactured by selective laser melting.
                    Mater Sci Eng A 2020;789:139615.  DOI
               36.       Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 1967;22:151-2.  DOI
               37.       Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 1969;2:65-71.  DOI
               38.       Will G. The rietveld method. In powder diffraction. Berlin Heidelberg: Springer; 2006, pp. 41-72.  DOI
               39.       Degen T, Sadki M, Bron E, König U, Nénert G. The HighScore suite. Powder Diffr 2014;29:S13-8.  DOI
               40.       Huang C, Ni H, Yen H. New protocol for orientation reconstruction from martensite to austenite in steels. Materialia 2020;9:100554.
                    DOI
               41.       Nishiyama Z, Crystallography of martensite (general). In martensitic transformation, Fine ME, editor. Cambridge: Academic Press;
                    1978, pp. 14-134.  DOI
               42.       Ansari MJ, Nguyen DS, Park HS. Investigation of SLM process in terms of temperature distribution and melting pool size: modeling
                    and experimental approaches. Materials 2019;12:1272.  DOI  PubMed  PMC
               43.       Li X, Kang C, Huang H, Zhang L, Sercombe T. Selective laser melting of an Al Ni Y Co La  metallic glass: processing,
                                                                            86  6  4.5  2  1.5
                    microstructure evolution and mechanical properties. Mater Sci Eng A 2014;606:370-9.  DOI
               44.       Dong L, Makradi A, Ahzi S, Remond Y. Three-dimensional transient finite element analysis of the selective laser sintering process. J
                    Mater Process Technol 2009;209:700-6.  DOI
               45.       Roberts I, Wang C, Esterlein R, Stanford M, Mynors D. A three-dimensional finite element analysis of the temperature field during
                    laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 2009;49:916-23.  DOI
               46.       Tsujimoto H, Kozaki S, Okutani Y, et al. Lifespan enhancement of crane rails, runway girders and overhead cranes using shape-
                    memory alloyed fish-plates; 2017, pp. 72-80.
               47.       Cao B, Iwamoto T. An experimental investigation on rate dependency of thermomechanical and Stress-induced martensitic
                    transformation behavior in Fe-28Mn-6Si-5Cr shape memory alloy under compression. Int J Impact Eng 2019;132:103284.  DOI
   57   58   59   60   61   62   63   64   65   66   67