Page 64 - Read Online
P. 64

Page 24 of 25     Dela Cruz et al. Microstructures 2023;3:2023012  https://dx.doi.org/10.20517/microstructures.2022.33

                    remelting. Mater Charact 2020;161:110079.  DOI
               79.       Xiong Z, Zhang P, Tan C, Dong D, Ma W, Yu K. Selective laser melting and remelting of pure tungsten. Adv Eng Mater
                    2020;22:1901352.  DOI
               80.       Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 2016;117:371-92.  DOI
               81.       Debroy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci
                    2018;92:112-224.  DOI
               82.       Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. Microstructures and mechanical properties of Ti Al V Parts fabricated by
                                                                                           4
                                                                                         6
                    selective laser melting and electron beam melting. J Mater Eng Perform 2013;22:3872-83.  DOI
               83.       Trevisan F, Calignano F, Lorusso M, et al. On the selective laser melting (SLM) of the AlSi Mg alloy: process, microstructure, and
                                                                                10
                    mechanical properties. Materials 2017;10:76.  DOI  PubMed  PMC
               84.       Spierings A, Dawson K, Dumitraschkewitz P, Pogatscher S, Wegener K. Microstructure characterization of SLM-processed Al-Mg-
                    Sc-Zr alloy in the heat treated and HIPed condition. Addit Manuf 2018;20:173-81.  DOI
               85.       Cao S, Zou Y, Lim CVS, Wu X. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment,
                    microstructure, and property. Light Adv Manuf 2021;2.  DOI
               86.       Nigito E, Diemer F, Husson S, Ou S, Tsai M, Rézaï-aria F. Microstructure of NiTi superelastic alloy manufactured by selective laser
                    melting. Mater Lett 2022;324:132665.  DOI
               87.       Attard B, Cruchley S, Beetz C, Megahed M, Chiu Y, Attallah M. Microstructural control during laser powder fusion to create graded
                    microstructure Ni-superalloy components. Addit Manuf 2020;36:101432.  DOI
               88.       Li X, Tan W. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing.
                    Comput Mater Sci 2018;153:159-69.  DOI
               89.       Antonysamy A, Meyer J, Prangnell P. Effect of build geometry on the β-grain structure and texture in additive manufacture of
                    Ti6Al4V by selective electron beam melting. Mater Charact 2013;84:153-68.  DOI
               90.       Mohebbi MS, Ploshikhin V. Implementation of nucleation in cellular automaton simulation of microstructural evolution during
                    additive manufacturing of Al alloys. Addit Manuf 2020;36:101726.  DOI
               91.       Yan F, Xiong W, Faierson EJ. Grain structure control of additively manufactured metallic materials. Materials 2017;10:1260.  DOI
               92.       Yang M, Wang L, Yan W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to
                    coarsening. NPJ Comput Mater 2021:7.  DOI
               93.       Ikeda T, Yonehara M, Ikeshoji T, et al. Influences of process parameters on the microstructure and mechanical properties of
                    CoCrFeNiTi based high-entropy alloy in a laser powder bed fusion process. Crystals 2021;11:549.  DOI
               94.       Liu  D,  Wang  S,  Yan  W.  Grain  structure  evolution  in  transition-mode  melting  in  direct  energy  deposition.  Mater  Des
                    2020;194:108919.  DOI
               95.       Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical
                    properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 2015;639:647-55.  DOI
               96.       Ali H, Ghadbeigi H, Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted
                    Ti Al V. Mater Sci Eng A 2018;712:175-87.  DOI
                     6  4
               97.       Chen C, Yin J, Zhu H, Xiao Z, Zhang L, Zeng X. Effect of overlap rate and pattern on residual stress in selective laser melting. Int J
                    Mach Tools Manuf 2019;145:103433.  DOI
               98.       Acharya R, Sharon JA, Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Mater 2017;124:360-71.
                    DOI
               99.       Liu P, Wang Z, Xiao Y, Horstemeyer MF, Cui X, Chen L. Insight into the mechanisms of columnar to equiaxed grain transition
                    during metallic additive manufacturing. Addit Manuf 2019;26:22-9.  DOI
               100.      Wang T, Zhu Y, Zhang S, Tang H, Wang H. Grain morphology evolution behavior of titanium alloy components during laser melting
                    deposition additive manufacturing. J Alloys Compd 2015;632:505-13.  DOI
               101.      Ozcan H, Ma J, Wang S, et al. Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape
                    memory alloy wires. Scripta Mater 2017;134:66-70.  DOI
               102.      Vollmer M, Krooß P, Kriegel M, et al. Cyclic degradation in bamboo-like Fe-Mn-Al-Ni shape memory alloys - the role of grain
                    orientation. Scripta Mater 2016;114:156-60.  DOI
               103.      Ueland SM, Chen Y, Schuh CA. Oligocrystalline shape memory alloys. Adv Funct Mater 2012;22:2094-9.  DOI
               104.      Abbaschian R, Abbaschian L, Reed-Hill RE. Elements of grain boundaries. In physical metallurgy principles, Stamford, CT: Cengage
                    learning; 2009, pp. 158-93.
               105.      Callister WD, Rethwisch DG. Dislocations and strengthening mechanisms. In materials science and engineering: an introduction.
                    Hoboken, NJ: Wiley; 2014, pp. 216-50.
               106.      Xu Z, Hodgson MA, Cao P. A comparative study of powder metallurgical (PM) and wrought Fe-Mn-Si alloys. Mater Sci Eng A
                    2015;630:116-24.  DOI
               107.      Fiocchi J, Lemke J, Zilio S, Biffi C, Coda A, Tuissi A. The effect of Si addition and thermomechanical processing in an Fe-Mn alloy
                    for biodegradable implants: mechanical performance and degradation behavior. Mater Today Commun 2021;27:102447.  DOI
               108.      Bergeon N, Guenin G, Esnouf C. Microstructural analysis of the stress-induced ε martensite in a Fe-Mn-Si-Cr-Ni shape memory
                    alloy: Part I—calculated description of the microstructure. Mater Sci Eng A 1998;242:77-86.  DOI
               109.      Gu Q, Van Humbeeck J, Delaey L. A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys. J Phys
   59   60   61   62   63   64   65   66   67   68   69