Page 65 - Read Online
P. 65

Dela Cruz et al. Microstructures 2023;3:2023012  https://dx.doi.org/10.20517/microstructures.2022.33  Page 25 of 25

                    1994;04:C3-135.  DOI
               110.      Putaux JL, Chevalier JP. HREM study of self-accommodated thermal ε-martensite in an F-Mn-Si-Cr-Ni shape memory alloy. Acta
                    Mater 1996;44:1701-16.  DOI
               111.      Jang W, Kang J, Jeeb K, Shinb M, Hong J. The effects of grain size and transformation texture on the shape memory effect in Fe-
                    15Mn-5Cr-5Co-3Si alloy. In Ecomaterials, Yamamoto R, editor. Elsevier. 1994; pp. 993-6.  DOI
               112.      Käfer KA, Bernardi HH, Santos ODS, Otubo L, Lima NBD, Otubo J. The influence of microstructure and mechanical resistance on
                    the shape memory of ecae processed stainless Fe-Mn-Si-Cr-Ni-Co steel. Mat Res 2018:21.  DOI
               113.      Onuki Y, Fujieda S, Shinoda K, Ohtani H, Maruyama T, Suzuki S. Depletion of manganese in the surface layers of Fe-Mn-Si shape
                    memory alloys by annealing. Defect Diffus Forum 2015;363:196-201.  DOI
               114.      Callister WD, Rethwisch DG. Imperfections in solids. In materials science and engineering: an introduction. Hoboken, NJ: Wiley;
                    2018, pp. 92-120.
               115.      Feng YP, Blanquer A, Fornell J, et al. Novel Fe-Mn-Si-Pd alloys: insights into mechanical, magnetic, corrosion resistance and
                    biocompatibility performances. J Mater Chem B 2016;4:6402-12.  DOI  PubMed
               116.      Spandana D, Desai H, Chakravarty D, Vijay R, Hembram K. Fabrication of a biodegradable Fe-Mn-Si alloy by field assisted
                    sintering. Adv Powder Technol 2020;31:4577-84.  DOI
               117.      Eskil M, Kanca E. A new formulation for martensite start temperature of Fe-Mn-Si shape memory alloys using genetic programming.
                    Comput Mater Sci 2008;43:774-84.  DOI
               118.      Hsu T, Zuyao X. Martensitic transformation in Fe-Mn-Si based alloys. Mater Sci Eng A 1999;273-275:494-7.  DOI
               119.      Balo ŞN. A comparative study on crystal structure and magnetic properties of Fe-Mn-Si and Fe-Mn-Si-Cr Alloys. J Supercond Nov
                    Magn 2013;26:1085-8.  DOI
               120.      Tomota Y, Strum M, Morris JW. Microstructural dependence of Fe-high Mn tensile behavior. Metall Trans A 1986;17:537-47.  DOI
               121.      Zaefferer S, Elhami N, Konijnenberg P. Electron backscatter diffraction (EBSD) techniques for studying phase transformations in
                    steels. In phase transformations in steels, Pereloma E, Edmonds DV, editor. Woodhead Publishing; 2012, pp. 557-87.  DOI
               122.      Roberts G, Ward RM, Strangwood M, Davis CL. Use of misorientation values to further understand deformation in rail steels.
                    Ironmak Steelmak 2013;40:92-7.  DOI
               123.      Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microsc Microanal
                    2011;17:316-29.  DOI  PubMed
               124.      Brewer LN, Field DP, Merriman CC. Mapping and assessing plastic deformation using EBSD. In electron backscatter diffraction in
                    materials science, Schwartz AJ, editor. Boston, MA: Springer; 2009, pp. 251-62.  DOI
               125.      Hou J, Peng Q, Shoji T, Wang J, Han E, Ke W. Effects of cold working path on strain concentration, grain boundary microstructure
                    and stress corrosion cracking in Alloy 600. Corros Sci 2011;53:2956-62.  DOI
               126.      Hu X, Chai L, Zhu Y, et al. Quantitative study of microstructural, textural and hardness evolution of high-purity Ti sheet during
                    rolling from low to medium strains. Mater Today Commun 2021;29:102989.  DOI
               127.      Qiao D, Zhang W, Pan T, Crooker P, David S, Feng Z. Evaluation of residual plastic strain distribution in dissimilar metal weld by
                    hardness mapping. Sci Technol Weld Join 2013;18:624-30.  DOI
               128.      Fukui D, Nakada N, Onaka S. Internal residual stress originated from Bain strain and its effect on hardness in Fe-Ni martensite. Acta
                    Mater 2020;196:660-8.  DOI
               129.      Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rap Prototyp J 2006;12:254-65.  DOI
               130.      Vrancken B, Cain V, Knutsen R, Van Humbeeck J. Residual stress via the contour method in compact tension specimens produced
                    via selective laser melting. Scripta Mater 2014;87:29-32.  DOI
               131.      Lu L, Wu C, Wang J, Liu Y, Tu H, Su X. Experimental investigation and thermodynamic calculation of the Zn-Fe-Ce system. J
                    Alloys Compd 2015;648:881-9.  DOI
               132.      Liu Y, Yang Y, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf
                    Technol 2016;87:647-56.  DOI
               133.      Mishurova T, Cabeza S, Artzt K, et al. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials
                    2017;10:348.  DOI  PubMed  PMC
   60   61   62   63   64   65   66   67   68   69   70