Page 63 - Read Online
P. 63

Dela Cruz et al. Microstructures 2023;3:2023012  https://dx.doi.org/10.20517/microstructures.2022.33  Page 23 of 25

               48.       ASTM E92-16. Standard test methods for Vickers hardness and Knoop hardness of metallic materials. PA, USA: ASTM
                    International; 2016.
               49.       Darvish K, Chen Z, Pasang T. Reducing lack of fusion during selective laser melting of CoCrMo alloy: effect of laser power on
                    geometrical features of tracks. Mater Des 2016;112:357-66.  DOI
               50.       Carluccio D, Bermingham M, Kent D, Demir AG, Previtali B, Dargusch MS. Comparative study of pure iron manufactured by
                    selective laser melting, laser metal deposition, and casting processes. Adv Eng Mater 2019;21:1900049.  DOI
               51.       Letenneur M, Brailovski V, Kreitcberg A, Paserin V, Bailon-Poujol I. Laser powder bed fusion of water-atomized iron-based
                    powders: process optimization. J Manuf Mater Process 2017;1:23.  DOI
               52.       Liverani E, Toschi S, Ceschini L, Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and
                    mechanical properties of 316 L austenitic stainless steel. J Mater Process Technol 2017;249:255-63.  DOI
               53.       Wang D, Song C, Yang Y, Bai Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property
                    characterization of 316 L stainless steel parts. Mater Des 2016;100:291-9.  DOI
               54.       Nguyen Q, Zhu Z, Ng F, Chua B, Nai S, Wei J. High mechanical strengths and ductility of stainless steel 304 L fabricated using
                    selective laser melting. J Mater Sci Technol 2019;35:388-94.  DOI
               55.       Kang N, Coddet P, Dembinski L, Liao H, Coddet C. Microstructure and strength analysis of eutectic Al-Si alloy in-situ manufactured
                    using selective laser melting from elemental powder mixture. J Alloys Compd 2017;691:316-22.  DOI
               56.       Hou Y, Su H, Zhang H, Wang X, Wang C. Fabricating homogeneous FeCoCrNi high-entropy alloys via SLM in situ alloying. Metals
                    2021;11:942.  DOI
               57.       Haynes WM, Lide DR. CRC handbook of chemistry and physics. In CRC handbook of chemistry and physics, Haynes WM, Lide
                    DR, editors. Cleveland, Ohio: CRC Press; 2017, pp. 97-126.
               58.       Chu J, Bao Y. Volatilization behavior of manganese from molten steel with different alloying methods in vacuum. Metals
                    2020;10:1348.  DOI
               59.       Yang C, Lin H, Lin K. Improvement of shape memory effect in Fe-Mn-Si alloy by slight tantalum addition. Mater Sci Eng A
                    2009;518:139-43.  DOI
               60.       Watson A, Markus T. Ternary system Fe-Mn-Si. In ternary steel systems: phase diagrams and phase transition data, Watson A,
                    Markus T, editors. Berlin Heidelberg: Springer; 2015, pp. 121-33.  DOI
               61.       Tenbrock C, Fischer FG, Wissenbach K, et al. Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in
                    laser powder bed fusion. J Mater Process Technol 2020;278:116514.  DOI
               62.       Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective
                    beam melting. J Mater Process Technol 2014;214:2522-8.  DOI
               63.       Madison JD, Aagesen LK. Quantitative characterization of porosity in laser welds of stainless steel. Scripta Materialia 2012;67:783-
                    6.  DOI
               64.       He P, Webster RF, Yakubov V, et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder
                    bed fusion additive manufacturing. Acta Mater 2021;220:117312.  DOI
               65.       DuPont JN. Fundamentals of weld solidification. In Welding Fundamentals and Processes. 2011; pp. 96-114.  DOI
               66.       Liu B, Li B, Li Z. Selective laser remelting of an additive layer manufacturing process on AlSi Mg. Results Phys 2019;12:982-8.
                                                                                  10
                    DOI
               67.       Ghayoor M, Lee K, He Y, Chang C, Paul BK, Pasebani S. Selective laser melting of 304 L stainless steel: role of volumetric energy
                    density on the microstructure, texture and mechanical properties. Addit Manuf 2020;32:101011.  DOI
               68.       Pham MS, Dovgyy B, Hooper PA, Gourlay CM, Piglione A. The role of side-branching in microstructure development in laser
                    powder-bed fusion. Nat Commun 2020;11:749.  DOI  PubMed  PMC
               69.       Lippold JC. Welding metallurgy principles. In welding metallurgy and weldability; 2014. pp. 9-83.  DOI
               70.       Zhang X, Yocom CJ, Mao B, Liao Y. Microstructure evolution during selective laser melting of metallic materials: a review. J Laser
                    Appl 2019;31:031201.  DOI
               71.       Bertoli U, Macdonald BE, Schoenung JM. Stability of cellular microstructure in laser powder bed fusion of 316 L stainless steel.
                    Mater Sci Eng A 2019;739:109-17.  DOI
               72.       Pinomaa T, Lindroos M, Walbrühl M, Provatas N, Laukkanen A. The significance of spatial length scales and solute segregation in
                    strengthening rapid solidification microstructures of 316 L stainless steel. Acta Mater 2020;184:1-16.  DOI
               73.       Li Y, Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy
                    powder. Mater Des 2014;63:856-67.  DOI
               74.       Chen Y, Chen H, Chen J, Xiong J, Wu Y, Dong S. Numerical and experimental investigation on thermal behavior and microstructure
                    during selective laser melting of high strength steel. J Manuf Process 2020;57:533-42.  DOI
               75.       Jung HY, Choi SJ, Prashanth KG, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study.
                    Mater Des 2015;86:703-8.  DOI
               76.       Suryawanshi J, Prashanth K, Scudino S, Eckert J, Prakash O, Ramamurty U. Simultaneous enhancements of strength and toughness
                    in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 2016;115:285-94.  DOI
               77.       Prashanth K, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd 2017;707:27-
                    34.  DOI
               78.       Guan J, Jiang Y, Zhang X, Chong X. Microstructural evolution and EBSD analysis of AlSi10Mg alloy fabricated by selective laser
   58   59   60   61   62   63   64   65   66   67   68