Page 113 - Read Online
P. 113

Wan et al. Microstructures 2023;3:2023014  https://dx.doi.org/10.20517/microstructures.2022.36  Page 19 of 19

                   stainless steel in sulfuric acid solution. Corros Sci 2018;134:131-9.  DOI
               23.      Wang C, Yu J, Yu Y, Zhao Y, Zhang Y, Han X. Comparison of the corrosion and passivity behavior between CrMnFeCoNi and
                   CrFeCoNi coatings prepared by argon arc cladding. J Mater Res Technol 2020;9:8482-96.  DOI
               24.      Wang C, Yu Y, Yu J, Zhang Y, Wang F, Li H. Effect of the macro-segregation on corrosion behavior of CrMnFeCoNi coating
                   prepared by arc cladding. J Alloy Compd 2020;846:156263.  DOI
               25.      Wang L, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy
                   alloy by XPS and ToF-SIMS. Corros Sci 2020;167:108507.  DOI
               26.      Pang J, Xiong T, Wei X, et al. Oxide MnCr O  induced pitting corrosion in high entropy alloy CrMnFeCoNi.  Materialia
                                                   2  4
                   2019;6:100275.  DOI
               27.      Li S, Dong H, Shi L, Li P, Ye F. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld. Corros Sci
                   2017;123:243-55.  DOI
               28.      Zhang X. Corrosion behavior of Al-3.0 wt.%Mg alloy by cold-drawing process. Int J Electrochem Sci 2020:1727-41.  DOI
               29.      Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials - review. Corros Sci 2015;90:5-22.  DOI
               30.      Yan Y, Cao H, Kang Y, et al. Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and
                   corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. J Alloy Compd 2017;693:1277-89.  DOI
               31.      Park K, Kwon H. Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys. Electrochim Acta 2010;55:3421-7.  DOI
               32.      Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nat Commun 2018;9:2559.  DOI  PubMed
                   PMC
               33.      Sun J, Zhang G, Liu W, Lu M. The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in
                   carbon dioxide-saturated solution. Corros Sci 2012;57:131-8.  DOI
               34.      Rovere C, Alano J, Silva R, Nascente P, Otubo J, Kuri S. Characterization of passive films on shape memory stainless steels. Corros
                   Sci 2012;57:154-61.  DOI
               35.      Barsoukov E, Macdonald JR. Impedance spectroscopy: theory, experiment, and applications second edition. Evgenij Barsoukov and J.
                   Ross Macdonald (eds). John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. J Raman Spectrosc 2007;38:122.  DOI
               36.      Kissi M, Bouklah M, Hammouti B, Benkaddour M. Establishment of equivalent circuits from electrochemical impedance spectroscopy
                   study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution. Appl Surf Sci 2006;252:4190-7.  DOI
               37.      Tachibana S, Kuronuma Y, Yokota T, Yamada K, Moriya Y, Kami C. Effect of hot rolling and cooling conditions on intergranular
                   corrosion behavior in Alloy625 clad steel. Corros Sci 2015;99:125-33.  DOI
               38.      Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros Sci 2010;52:589-94.
                   DOI
               39.      Kao Y, Lee T, Chen S, Chang Y. Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids.
                   Corros Sci 2010;52:1026-34.  DOI
               40.      Boudin S, Vignes J, Lorang G, et al. Analytical and electrochemical study of passive films formed on nickel-chromium alloys:
                   influence of the chromium bulk concentration. Surf Interface Anal 1994;22:462-6.  DOI
               41.      Huang J, Wu X, Han E. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline
                   environments. Corros Sci 2010;52:3444-52.  DOI
               42.      Li T, Scully JR, Frankel GS. Localized corrosion: passive film breakdown vs. pit growth stability: part iii. a unifying set of principal
                   parameters and criteria for pit stabilization and salt film formation. J Electrochem Soc 2018;165:C762-70.  DOI
               43.      Li T, Swanson OJ, Frankel G, et al. Localized corrosion behavior of a single-phase non-equimolar high entropy alloy. Electrochim
                   Acta 2019;306:71-84.  DOI
               44.      Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci 2010;52:579-88.
                   DOI
               45.      Asami K, Hashimoto K, Shimodaira S. An XPS study of the passivity of a series of iron-chromium alloys in sulphuric acid. Corros Sci
                   1978;18:151-60.  DOI
               46.      Quiambao KF, Mcdonnell SJ, Schreiber DK, et al. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate
                   solutions. Acta Mater 2019;164:362-76.  DOI
   108   109   110   111   112   113   114   115   116   117   118