Page 112 - Read Online
P. 112

Page 18 of 19         Wan et al. Microstructures 2023;3:2023014  https://dx.doi.org/10.20517/microstructures.2022.36

               Entrepreneurial Research Team Program (No. 2016ZT06C279).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       George E, Curtin W, Tasan C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta
                   Mater 2020;188:435-74.  DOI
               2.       Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George E. The influences of temperature and microstructure on the tensile properties
                   of a CoCrFeMnNi high-entropy alloy. Acta Mater 2013;61:5743-55.  DOI
               3.       Zhang Z, Mao MM, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun
                   2015;6:10143.  DOI  PubMed  PMC
               4.       Chuang M, Tsai M, Wang W, Lin S, Yeh J. Microstructure and wear behavior of Al Co CrFeNi Ti  high-entropy alloys. Acta Mater
                                                                         x  1.5   1.5  y
                   2011;59:6308-17.  DOI
               5.       Granberg F, Nordlund K, Ullah MW, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase
                   alloys. Phys Rev Lett 2016;116:135504.  DOI  PubMed
               6.       Shi Y, Collins L, Feng R, et al. Homogenization of Al CoCrFeNi high-entropy alloys with improved corrosion resistance. Corros Sci
                   2018;133:120-31.  DOI
               7.       Chen Y, Duval T, Hung U, Yeh J, Shih H. Microstructure and electrochemical properties of high entropy alloys-a comparison with
                   type-304 stainless steel. Corros Sci 2005;47:2257-79.  DOI
               8.       Miracle D, Miller J, Senkov O, Woodward C, Uchic M, Tiley J. Exploration and development of high entropy alloys for structural
                   applications. Entropy 2014;16:494-525.  DOI
               9.       Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A
                   2004;375-377:213-8.  DOI
               10.      Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic
                   applications. Science 2014;345:1153-8.  DOI  PubMed
               11.      Sun S, Tian Y, Lin H, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy. J Alloy
                   Compd 2019;806:992-8.  DOI
               12.      Sieradzki K, Newman RC. A percolation model for passivation in stainless steels. J Electrochem Soc 1986;133:1979-80.  DOI
               13.      Yuan S, Liang B, Zhao Y, Pehkonen S. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater
                   containing inorganic sulphide and sulphate-reducing bacteria. Corros Sci 2013;74:353-66.  DOI
               14.      Tan L, Ren X, Sridharan K, Allen T. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants.
                   Corros Sci 2008;50:3056-62.  DOI
               15.      Thomas S, Birbilis N, Venkatraman M, Cole I. Self-repairing oxides to protect zinc: review, discussion and prospects. Corros Sci
                   2013;69:11-22.  DOI
               16.      Qiu Y, Thomas S, Gibson MA, Fraser HL, Birbilis N. Corrosion of high entropy alloys. NPJ Mater Degrad 2017;1:15.  DOI
               17.      Xiao D, Zhou P, Wu W, et al. Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys. Mater
                   Des 2017;116:438-47.  DOI
               18.      Wang R, Zhang K, Davies C, Wu X. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy
                   alloy prepared by direct laser fabrication. J Alloy Compd 2017;694:971-81.  DOI
               19.      Li QH, Yue TM, Guo ZN, Lin X. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on
                   AISI 1045 steel by the electrospark process. Metall Mater Trans A 2013;44:1767-78.  DOI
               20.      Hsu Y, Chiang W, Wu J. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem
                   Phys 2005;92:112-7.  DOI
               21.      Ye Q, Feng K, Li Z, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl Surf Sci
                   2017;396:1420-6.  DOI
               22.      Luo H, Li Z, Mingers AM, Raabe D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304
   107   108   109   110   111   112   113   114   115   116   117