Page 24 - Read Online
P. 24

Page 20 of 21          Liu et al. Microstructures 2023;3:2023001  https://dx.doi.org/10.20517/microstructures.2022.23

                    driven CO  reduction. J Mater Chem A 2022;10:4279-87.  DOI
                           2
               68.       Li F, Liu Y, Chen Q, et al. Transient photovoltage study of the kinetics and synergy of electron/hole co-extraction in MoS2/Ag-In-
                    Zn-S/carbon dot photocatalysts for promoted hydrogen production. Chem Eng J 2022;439:135759.  DOI
               69.       Ye K, Wang Z, Gu J, et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting
                    performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10:772-9.  DOI
               70.       Wang Y, Godin R, Durrant JR, Tang J. Efficient Hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction
                    photocatalysts for enhanced methanol production from CO  under neutral conditions. Angew Chem Int Ed Engl 2021;60:20811-6.
                                                           2
                    DOI  PubMed  PMC
               71.       Wang Y, Liu X, Han X, et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to
                    methanol by pure water. Nat Commun 2020;11:2531.  DOI  PubMed  PMC
               72.       Zhou T, Chen S, Wang J, et al. Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole
                    transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem Eng J 2021;403:126350.  DOI
               73.       Choi Y, Bae S, Kim B, Ryu J. Atomically-dispersed cobalt ions on polyphenol-derived nanocarbon layers to improve charge
                    separation, hole storage, and catalytic activity of water-oxidation photoanodes. J Mater Chem A 2021;9:13874-82.  DOI
               74.       Rombach FM, Haque SA, Macdonald TJ. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ
                    Sci 2021;14:5161-90.  DOI
               75.       Gao B, Wang T, Li Y, et al. Boosting the stability and photoelectrochemical activity of a BiVO  photoanode through a bifunctional
                                                                                  4
                    polymer coating. J Mater Chem A 2021;9:3309-13.  DOI
               76.       Gu X, Chen Z, Li Y, et al. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted
                    electrocatalyst for overall water splitting. ACS Appl Mater Interfaces 2021;13:24814-23.  DOI  PubMed
               77.       Li F, Liu Y, Mao B, et al. Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen
                    production. Appl Catalysis B Environ 2021;292:120154.  DOI
               78.       Liu Y, Zhou X, Shen C, et al. Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H  evolution over g-
                                                                                              2
                    C N  anchored with ferrocene-based hole relay. Catal Sci Technol 2018;8:2853-9.  DOI
                       4
                     3
               79.       Olshansky JH, Balan AD, Ding TX, Fu X, Lee YV, Alivisatos AP. Temperature-dependent hole transfer from photoexcited quantum
                    dots to molecular species: evidence for trap-mediated transfer. ACS Nano 2017;11:8346-55.  DOI  PubMed
               80.       Niu F, Zhou Q, Liu R, Hu K. Photoinduced hole hopping across CdS quantum dot surfaces for photoelectrochemical water oxidation.
                    ACS Appl Energy Mater 2022;5:1244-51.  DOI
               81.       Niu F, Zhou Q, Han Y, et al. Rapid hole extraction based on cascade band alignment boosts photoelectrochemical water oxidation
                    efficiency. ACS Catal 2022;12:10028-38.  DOI
               82.       Wu K, Du Y, Tang H, Chen Z, Lian T. Efficient extraction of trapped holes from colloidal CdS nanorods. J Am Chem Soc
                    2015;137:10224-30.  DOI  PubMed
               83.       Li XB, Liu B, Wen M, et al. Hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and
                    photoelectrochemical hydrogen evolution by solar energy. Adv Sci 2016;3:1500282.  DOI  PubMed  PMC
               84.       Forster M, Cheung DWF, Gardner AM, Cowan AJ. Potential and pitfalls: on the use of transient absorption spectroscopy for in situ
                    and operando studies of photoelectrodes. J Chem Phys 2020;153:150901.  DOI  PubMed
               85.       Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. Dynamics of efficient electron-hole separation in TiO  nanoparticles
                                                                                                2
                    revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition.  Phys Chem Chem Phys
                    2007;9:1453-60.  DOI  PubMed
               86.       Lian Z, Sakamoto M, Kobayashi Y, et al. Anomalous photoinduced hole transport in type I core/mesoporous-shell nanocrystals for
                    efficient photocatalytic H  evolution. ACS Nano 2019;13:8356-63.  DOI  PubMed
                                    2
               87.       Andrews JL, Cho J, Wangoh L, et al. Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with
                    topochemically stabilized tin vanadium oxide. J Am Chem Soc 2018;140:17163-74.  DOI  PubMed
               88.       Taheri MM, Elbert KC, Yang S, et al. Distinguishing electron and hole dynamics in functionalized CdSe/CdS core/shell quantum dots
                    using complementary ultrafast spectroscopies and kinetic modeling. J Phys Chem C 2021;125:31-41.  DOI
               89.       Yu S, Fan XB, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS
                    colloidal quantum dots. Nat Commun 2018;9:4009.  DOI  PubMed  PMC
               90.       Fan XB, Yu S, Wang X, et al. Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen
                    photogeneration. Adv Mater 2019;31:e1804872.  DOI  PubMed
               91.       Bredar ARC, Chown AL, Burton AR, Farnum BH. Electrochemical impedance spectroscopy of metal oxide electrodes for energy
                    applications. ACS Appl Energy Mater 2020;3:66-98.  DOI
               92.       Gimenez S, Dunn HK, Rodenas P, et al. Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte
                    determined by impedance spectroscopy. J Electroanal Chem 2012;668:119-25.  DOI
               93.       Cui J, Daboczi M, Regue M, et al. 2D bismuthene as a functional interlayer between BiVO  and NiFeOOH for enhanced oxygen-
                                                                                4
                    evolution photoanodes. Adv Funct Mater 2022:2207136-48.  DOI
               94.       Abbas MA, Bang JH. Anomalous transition of hole transfer pathways in gold nanocluster-sensitized TiO  photoelectrodes. ACS
                                                                                           2
                    Energy Lett 2020;5:3718-24.  DOI
               95.       Kolay A, Kokal RK, Kalluri A, et al. New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum-
                    dot co-sensitized solar cells. ACS Appl Mater Interfaces 2017;9:34915-26.  DOI  PubMed
   19   20   21   22   23   24   25   26   27   28   29