Page 23 - Read Online
P. 23

Liu et al. Microstructures 2023;3:2023001  https://dx.doi.org/10.20517/microstructures.2022.23  Page 19 of 21

                    layer for water oxidation. Angew Chem Int Ed Engl 2021;60:1433-40.  DOI  PubMed
               38.       Zhang R, Ning X, Wang Z, et al. Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy
                    regulation strategy on the FeNiOOH Co-catalyst. Small 2022;18:e2107938.  DOI  PubMed
               39.       Ji M, Chen R, Di J, et al. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to
                    boost the photocatalytic activity. J Colloid Interface Sci 2019;533:612-20.  DOI  PubMed
               40.       Zhao Q, Liu Z, Guo Z, Ruan M, Yan W. The collaborative mechanism of surface S-vacancies and piezoelectric polarization for
                    boosting CdS photoelectrochemical performance. Chem Eng J 2022;433:133226.  DOI
               41.       Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual Oxygen and tungsten vacancies on a WO3 Photoanode for enhanced water
                    oxidation. Angew Chem Int Ed Engl 2016;55:11819-23.  DOI  PubMed
               42.       Fernández-climent R, Giménez S, García-tecedor M. The role of oxygen vacancies in water splitting photoanodes. Sustain Energy
                    Fuels 2020;4:5916-26.  DOI
               43.       Xu  W,  Tian  W,  Meng  L,  Cao  F,  Li  L.  Interfacial  chemical  bond-modulated  z-scheme  charge  transfer  for  efficient
                    photoelectrochemical water splitting. Adv Energy Mater 2021;11:2003500.  DOI
               44.       Li J, Yuan H, Zhang W, et al. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A
                    review. Carbon Energy 2022;4:294-331.  DOI
               45.       Mane P, Bae H, Burungale V, et al. Interface-engineered Z-scheme of BiVO /g-C N  photoanode for boosted photoelectrochemical
                                                                      4  3  4
                    water splitting and organic contaminant elimination under solar light. Chemosphere 2022;308:136166.  DOI  PubMed
               46.       Maity D, Karmakar K, Pal D, Saha S, Khan GG, Mandal K. One-dimensional p-ZnCo O /n-ZnO nanoheterojunction photoanode
                                                                             2  4
                    enabling photoelectrochemical water splitting. ACS Appl Energy Mater 2021;4:11599-608.  DOI
               47.       Ho W, Chen J, Wu J. Epitaxial, energetic, and morphological synergy on photocharge collection of the Fe TiO /ZnO nanodendrite
                                                                                             5
                                                                                          2
                    heterojunction array photoelectrode for photoelectrochemical water oxidation. ACS Sustain Chem Eng 2021;9:8868-78.  DOI
               48.       Hao J, Zhuang Z, Cao K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy
                    electrocatalysts. Nat Commun 2022;13:2662.  DOI  PubMed  PMC
               49.       Dong G, Hu H, Huang X, Zhang Y, Bi Y. Rapid activation of Co O  cocatalysts with oxygen vacancies on TiO  photoanodes for
                                                                3  4                          2
                    efficient water splitting. J Mater Chem A 2018;6:21003-9.  DOI
               50.       Cao X, Wang Y, Lin J, Ding Y. Ultrathin CoO  nanolayers derived from polyoxometalate for enhanced photoelectrochemical
                                                    x
                    performance of hematite photoanodes. J Mater Chem A 2019;7:6294-303.  DOI
               51.       Li H, Yin M, Li X, Mo R. Enhanced photoelectrochemical water oxidation performance in bilayer TiO /α-Fe O  Nanorod Arrays
                                                                                              3
                                                                                             2
                                                                                         2
                    Photoanode with Cu:NiO  as hole transport layer and Co-Pi as Cocatalyst. ChemSusChem 2021;14:2331-40.  DOI
                                    x
               52.       Wei J, Zhou C, Xin Y, Li X, Zhao L, Liu Z. Cooperation effect of heterojunction and co-catalyst in BiVO /Bi S /NiOOH photoanode
                                                                                        4  2 3
                    for improving photoelectrochemical performances. New J Chem 2018;42:19415-22.  DOI
               53.       Zhang B, Huang X, Hu H, Chou L, Bi Y. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts
                    for photoelectrochemical water splitting. J Mater Chem A 2019;7:4415-9.  DOI
               54.       Wang T, Long X, Wei S, et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous
                    FeOOH/CoOOH Cocatalysts. ACS Appl Mater Interfaces 2020;12:49705-12.  DOI  PubMed
               55.       Vo T, Tai Y, Chiang C. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water
                    splitting. Appl Catalysis B Environ 2019;243:657-66.  DOI
               56.       Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Photoelectrochemical and impedance spectroscopic investigation
                    of water oxidation with “Co-Pi”-coated hematite electrodes. J Am Chem Soc 2012;134:16693-700.  DOI  PubMed
               57.       Li M, Liu T, Yang Y, et al. Zipping Up NiFe(OH)x-encapsulated hematite to achieve an ultralow turn-on potential for water
                    oxidation. ACS Energy Lett 2019;4:1983-90.  DOI
               58.       Zhang K, Liu J, Wang L, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H O oxidative H O
                                                                                             2          2  2
                    synthesis. J Am Chem Soc 2020;142:8641-8.  DOI  PubMed
               59.       Liu Z, Du Y, Zhang P, Zhuang Z, Wang D. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon.
                    Matter 2021;4:3161-94.  DOI
               60.       Kaplan A, Yuan Z, Benck JD, et al. Current and future directions in electron transfer chemistry of graphene. Chem Soc Rev
                    2017;46:4530-71.  DOI  PubMed
               61.       Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR. CNT based photoelectrodes for PEC generation of hydrogen: a review.
                    Inter J Hydrog Energy 2017;42:3994-4006.  DOI
               62.       Kang Z, Lee ST. Carbon dots: advances in nanocarbon applications. Nanoscale 2019;11:19214-24.  DOI  PubMed
               63.       Ali M, Pervaiz E, Sikandar U, Khan Y. A review on the recent developments in zirconium and carbon-based catalysts for
                    photoelectrochemical water-splitting. Inter J Hydrog Energy 2021;46:18257-83.  DOI
               64.       Zhao Z, Zheng L, Hu W, Zheng H. Synergistic effect of silane and graphene oxide for enhancing the photoelectrochemical water
                    oxidation performance of WO3NS arrays. Electrochimica Acta 2018;292:322-30.  DOI
               65.       Ðorđević L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy
                    applications. Nat Nanotechnol 2022;17:112-30.  DOI  PubMed
               66.       Zhai Y, Zhang B, Shi R, et al. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Advan
                    Energy Mater 2022;12:2103426.  DOI
               67.       Liang Q, Yan X, Li Z, et al. Replacing Ru complex with carbon dots over MOF-derived Co O /In O  catalyst for efficient solar-
                                                                                 3  4  2  3
   18   19   20   21   22   23   24   25   26   27   28