Page 23 - Read Online
P. 23
Liu et al. Microstructures 2023;3:2023001 https://dx.doi.org/10.20517/microstructures.2022.23 Page 19 of 21
layer for water oxidation. Angew Chem Int Ed Engl 2021;60:1433-40. DOI PubMed
38. Zhang R, Ning X, Wang Z, et al. Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy
regulation strategy on the FeNiOOH Co-catalyst. Small 2022;18:e2107938. DOI PubMed
39. Ji M, Chen R, Di J, et al. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to
boost the photocatalytic activity. J Colloid Interface Sci 2019;533:612-20. DOI PubMed
40. Zhao Q, Liu Z, Guo Z, Ruan M, Yan W. The collaborative mechanism of surface S-vacancies and piezoelectric polarization for
boosting CdS photoelectrochemical performance. Chem Eng J 2022;433:133226. DOI
41. Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual Oxygen and tungsten vacancies on a WO3 Photoanode for enhanced water
oxidation. Angew Chem Int Ed Engl 2016;55:11819-23. DOI PubMed
42. Fernández-climent R, Giménez S, García-tecedor M. The role of oxygen vacancies in water splitting photoanodes. Sustain Energy
Fuels 2020;4:5916-26. DOI
43. Xu W, Tian W, Meng L, Cao F, Li L. Interfacial chemical bond-modulated z-scheme charge transfer for efficient
photoelectrochemical water splitting. Adv Energy Mater 2021;11:2003500. DOI
44. Li J, Yuan H, Zhang W, et al. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A
review. Carbon Energy 2022;4:294-331. DOI
45. Mane P, Bae H, Burungale V, et al. Interface-engineered Z-scheme of BiVO /g-C N photoanode for boosted photoelectrochemical
4 3 4
water splitting and organic contaminant elimination under solar light. Chemosphere 2022;308:136166. DOI PubMed
46. Maity D, Karmakar K, Pal D, Saha S, Khan GG, Mandal K. One-dimensional p-ZnCo O /n-ZnO nanoheterojunction photoanode
2 4
enabling photoelectrochemical water splitting. ACS Appl Energy Mater 2021;4:11599-608. DOI
47. Ho W, Chen J, Wu J. Epitaxial, energetic, and morphological synergy on photocharge collection of the Fe TiO /ZnO nanodendrite
5
2
heterojunction array photoelectrode for photoelectrochemical water oxidation. ACS Sustain Chem Eng 2021;9:8868-78. DOI
48. Hao J, Zhuang Z, Cao K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy
electrocatalysts. Nat Commun 2022;13:2662. DOI PubMed PMC
49. Dong G, Hu H, Huang X, Zhang Y, Bi Y. Rapid activation of Co O cocatalysts with oxygen vacancies on TiO photoanodes for
3 4 2
efficient water splitting. J Mater Chem A 2018;6:21003-9. DOI
50. Cao X, Wang Y, Lin J, Ding Y. Ultrathin CoO nanolayers derived from polyoxometalate for enhanced photoelectrochemical
x
performance of hematite photoanodes. J Mater Chem A 2019;7:6294-303. DOI
51. Li H, Yin M, Li X, Mo R. Enhanced photoelectrochemical water oxidation performance in bilayer TiO /α-Fe O Nanorod Arrays
3
2
2
Photoanode with Cu:NiO as hole transport layer and Co-Pi as Cocatalyst. ChemSusChem 2021;14:2331-40. DOI
x
52. Wei J, Zhou C, Xin Y, Li X, Zhao L, Liu Z. Cooperation effect of heterojunction and co-catalyst in BiVO /Bi S /NiOOH photoanode
4 2 3
for improving photoelectrochemical performances. New J Chem 2018;42:19415-22. DOI
53. Zhang B, Huang X, Hu H, Chou L, Bi Y. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts
for photoelectrochemical water splitting. J Mater Chem A 2019;7:4415-9. DOI
54. Wang T, Long X, Wei S, et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous
FeOOH/CoOOH Cocatalysts. ACS Appl Mater Interfaces 2020;12:49705-12. DOI PubMed
55. Vo T, Tai Y, Chiang C. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water
splitting. Appl Catalysis B Environ 2019;243:657-66. DOI
56. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Photoelectrochemical and impedance spectroscopic investigation
of water oxidation with “Co-Pi”-coated hematite electrodes. J Am Chem Soc 2012;134:16693-700. DOI PubMed
57. Li M, Liu T, Yang Y, et al. Zipping Up NiFe(OH)x-encapsulated hematite to achieve an ultralow turn-on potential for water
oxidation. ACS Energy Lett 2019;4:1983-90. DOI
58. Zhang K, Liu J, Wang L, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H O oxidative H O
2 2 2
synthesis. J Am Chem Soc 2020;142:8641-8. DOI PubMed
59. Liu Z, Du Y, Zhang P, Zhuang Z, Wang D. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon.
Matter 2021;4:3161-94. DOI
60. Kaplan A, Yuan Z, Benck JD, et al. Current and future directions in electron transfer chemistry of graphene. Chem Soc Rev
2017;46:4530-71. DOI PubMed
61. Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR. CNT based photoelectrodes for PEC generation of hydrogen: a review.
Inter J Hydrog Energy 2017;42:3994-4006. DOI
62. Kang Z, Lee ST. Carbon dots: advances in nanocarbon applications. Nanoscale 2019;11:19214-24. DOI PubMed
63. Ali M, Pervaiz E, Sikandar U, Khan Y. A review on the recent developments in zirconium and carbon-based catalysts for
photoelectrochemical water-splitting. Inter J Hydrog Energy 2021;46:18257-83. DOI
64. Zhao Z, Zheng L, Hu W, Zheng H. Synergistic effect of silane and graphene oxide for enhancing the photoelectrochemical water
oxidation performance of WO3NS arrays. Electrochimica Acta 2018;292:322-30. DOI
65. Ðorđević L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy
applications. Nat Nanotechnol 2022;17:112-30. DOI PubMed
66. Zhai Y, Zhang B, Shi R, et al. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Advan
Energy Mater 2022;12:2103426. DOI
67. Liang Q, Yan X, Li Z, et al. Replacing Ru complex with carbon dots over MOF-derived Co O /In O catalyst for efficient solar-
3 4 2 3