Page 22 - Read Online
P. 22

Page 18 of 21          Liu et al. Microstructures 2023;3:2023001  https://dx.doi.org/10.20517/microstructures.2022.23

               7.       Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.  DOI  PubMed
               8.       Zhao E, Du K, Yin PF, et al. Advancing photoelectrochemical energy conversion through atomic design of catalysts. Adv Sci
                    2022;9:e2104363.  DOI  PubMed  PMC
               9.       Marwat MA, Humayun M, Afridi MW, et al. Advanced catalysts for photoelectrochemical water splitting. ACS Appl Energy Mater
                    2021;4:12007-31.  DOI
               10.       Corby S, Rao RR, Steier L, Durrant JR. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater
                    2021;6:1136-55.  DOI
               11.       Yao T, An X, Han H, Chen JQ, Li C. Photoelectrocatalytic materials for solar water splitting. Adv Energy Mater 2018;8:1800210.
                    DOI
               12.       Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes.
                    Nat Catal 2022;5:300-10.  DOI
               13.       Zhuang Z, Huang J, Li Y, Zhou L, Mai L. The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based
                    catalysts and recent advances. ChemElectroChem 2019;6:3570-89.  DOI
               14.       Huang J, Zhuang Z, Zhao Y, et al. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen
                    evolution. Angew Chem Int Ed Engl 2022;61:e202203522.  DOI  PubMed
               15.       Sun R, Zhang Z, Li Z, Jing L. Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production.
                    ChemCatChem 2019;11:5875-84.  DOI
               16.       Rahman MZ, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production. Nat Rev Chem 2022;6:243-58.  DOI
               17.       Sahoo PP, Mikolášek M, Hušeková K, et al. Si-based metal-insulator-semiconductor structures with RuO -(IrO ) films for
                                                                                              2   2
                    photoelectrochemical water oxidation. ACS Appl Energy Mater 2021;4:11162-72.  DOI
               18.       Zhang B, Yu S, Dai Y, et al. Nitrogen-incorporation activates NiFeO  catalysts for efficiently boosting oxygen evolution activity and
                                                                x
                    stability of BiVO  photoanodes. Nat Commun 2021;12:6969.  DOI  PubMed  PMC
                               4
               19.       Wang J, Liao T, Wei Z, Sun J, Guo J, Sun Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen
                    evolution: an electronic structure tuning strategy. Small Methods 2021;5:e2000988.  DOI  PubMed
               20.       Liu G, Yang Y, Li Y, et al. Band structure engineering toward low-onset-potential photoelectrochemical hydrogen production. ACS
                    Mater Lett 2020;2:1555-60.  DOI
               21.       Li F, Benetti D, Zhang M, Feng J, Wei Q, Rosei F. Modulating the 0D/2D interface of hybrid semiconductors for enhanced
                    photoelectrochemical performances. Small Methods 2021;5:e2100109.  DOI  PubMed
               22.       Tashakory A, Karjule N, Abisdris L, Volokh M, Shalom M. Mediated growth of carbon nitride films via spray-coated seeding layers
                    for photoelectrochemical applications. Adv Sustain Syst 2021;5:2100005.  DOI
               23.       Karjule N, Singh C, Barrio J, et al. Carbon nitride-based photoanode with enhanced photostability and water oxidation kinetics. Adv
                    Funct Mater 2021;31:2101724.  DOI
               24.       Thorne JE, Jang JW, Liu EY, Wang D. Understanding the origin of photoelectrode performance enhancement by probing surface
                    kinetics. Chem Sci 2016;7:3347-54.  DOI  PubMed  PMC
               25.       Wang X, Sun W, Tian Y, et al. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced
                    photoelectrochemical water oxidation. Small 2021;17:e2100367.  DOI  PubMed
               26.       Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite (α-Fe O )
                                                                                                       2
                                                                                                         3
                    electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 2011;4:958-64.  DOI
               27.       Jiang P, Yu K, Yuan H, et al. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction
                    without sacrificial agents. J Mater Chem A 2021;9:9809-14.  DOI
               28.       Zhang T, Lu S. Sacrificial agents for photocatalytic hydrogen production: effects, cost, and development. Chem Catalysis
                    2022;2:1502-5.  DOI
               29.       Shen S, Lindley SA, Chen X, Zhang JZ. Hematite heterostructures for photoelectrochemical water splitting: rational materials design
                    and charge carrier dynamics. Energy Environ Sci 2016;9:2744-75.  DOI
               30.       Prasad U, Young JL, Johnson JC, et al. Enhancing interfacial charge transfer in a WO /BiVO  photoanode heterojunction through
                                                                             3
                                                                                  4
                    gallium and tungsten co-doping and a sulfur modified Bi O  interfacial layer. J Mater Chem A 2021;9:16137-49.  DOI
                                                          3
                                                        2
               31.       Sun D, Zhang X, Shi A, et al. Metal-free boron doped g-C3N5 catalyst: efficient doping regulatory strategy for photocatalytic water
                    splitting. Appl Surface Sci 2022;601:154186.  DOI
               32.       Nyarige  JS,  Paradzah  AT,  Krüger  TPJ,  Diale  M.  Mono-Doped  and  Co-Doped  nanostructured  hematite  for  improved
                    photoelectrochemical water splitting. Nanomaterials 2022;12:366.  DOI  PubMed  PMC
               33.       Meng L, Rao D, Tian W, Cao F, Yan X, Li L. Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn In
                                                                                                      10  16
                    S  nanosheet arrays toward improved photoelectrochemical performance. Angew Chem Int Ed Engl 2018;57:16882-7.  DOI  PubMed
                     34
               34.       Yang R, Zhu R, Fan Y, Hu L, Chen Q. In situ synthesis of C-doped BiVO  with natural leaf as a template under different calcination
                                                                    4
                    temperatures. RSC Adv 2019;9:14004-10.  DOI  PubMed  PMC
               35.       Wen L, Li X, Zhang R, et al. Oxygen vacancy engineering of MOF-derived Zn-doped Co O  nanopolyhedrons for enhanced
                                                                                    4
                                                                                  3
                    electrochemical nitrogen fixation. ACS Appl Mater Interfaces 2021;13:14181-8.  DOI  PubMed
               36.       Wang S, Wang X, Liu B, et al. Vacancy defect engineering of BiVO  photoanodes for photoelectrochemical water splitting.
                                                                    4
                    Nanoscale 2021;13:17989-8009.  DOI  PubMed
               37.       Pan JB, Wang BH, Wang JB, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO  photoanode by NiFe-MOFs thin
                                                                                    4
   17   18   19   20   21   22   23   24   25   26   27