Page 22 - Read Online
P. 22
Page 18 of 21 Liu et al. Microstructures 2023;3:2023001 https://dx.doi.org/10.20517/microstructures.2022.23
7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8. DOI PubMed
8. Zhao E, Du K, Yin PF, et al. Advancing photoelectrochemical energy conversion through atomic design of catalysts. Adv Sci
2022;9:e2104363. DOI PubMed PMC
9. Marwat MA, Humayun M, Afridi MW, et al. Advanced catalysts for photoelectrochemical water splitting. ACS Appl Energy Mater
2021;4:12007-31. DOI
10. Corby S, Rao RR, Steier L, Durrant JR. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater
2021;6:1136-55. DOI
11. Yao T, An X, Han H, Chen JQ, Li C. Photoelectrocatalytic materials for solar water splitting. Adv Energy Mater 2018;8:1800210.
DOI
12. Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes.
Nat Catal 2022;5:300-10. DOI
13. Zhuang Z, Huang J, Li Y, Zhou L, Mai L. The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based
catalysts and recent advances. ChemElectroChem 2019;6:3570-89. DOI
14. Huang J, Zhuang Z, Zhao Y, et al. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen
evolution. Angew Chem Int Ed Engl 2022;61:e202203522. DOI PubMed
15. Sun R, Zhang Z, Li Z, Jing L. Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production.
ChemCatChem 2019;11:5875-84. DOI
16. Rahman MZ, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production. Nat Rev Chem 2022;6:243-58. DOI
17. Sahoo PP, Mikolášek M, Hušeková K, et al. Si-based metal-insulator-semiconductor structures with RuO -(IrO ) films for
2 2
photoelectrochemical water oxidation. ACS Appl Energy Mater 2021;4:11162-72. DOI
18. Zhang B, Yu S, Dai Y, et al. Nitrogen-incorporation activates NiFeO catalysts for efficiently boosting oxygen evolution activity and
x
stability of BiVO photoanodes. Nat Commun 2021;12:6969. DOI PubMed PMC
4
19. Wang J, Liao T, Wei Z, Sun J, Guo J, Sun Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen
evolution: an electronic structure tuning strategy. Small Methods 2021;5:e2000988. DOI PubMed
20. Liu G, Yang Y, Li Y, et al. Band structure engineering toward low-onset-potential photoelectrochemical hydrogen production. ACS
Mater Lett 2020;2:1555-60. DOI
21. Li F, Benetti D, Zhang M, Feng J, Wei Q, Rosei F. Modulating the 0D/2D interface of hybrid semiconductors for enhanced
photoelectrochemical performances. Small Methods 2021;5:e2100109. DOI PubMed
22. Tashakory A, Karjule N, Abisdris L, Volokh M, Shalom M. Mediated growth of carbon nitride films via spray-coated seeding layers
for photoelectrochemical applications. Adv Sustain Syst 2021;5:2100005. DOI
23. Karjule N, Singh C, Barrio J, et al. Carbon nitride-based photoanode with enhanced photostability and water oxidation kinetics. Adv
Funct Mater 2021;31:2101724. DOI
24. Thorne JE, Jang JW, Liu EY, Wang D. Understanding the origin of photoelectrode performance enhancement by probing surface
kinetics. Chem Sci 2016;7:3347-54. DOI PubMed PMC
25. Wang X, Sun W, Tian Y, et al. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced
photoelectrochemical water oxidation. Small 2021;17:e2100367. DOI PubMed
26. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite (α-Fe O )
2
3
electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 2011;4:958-64. DOI
27. Jiang P, Yu K, Yuan H, et al. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction
without sacrificial agents. J Mater Chem A 2021;9:9809-14. DOI
28. Zhang T, Lu S. Sacrificial agents for photocatalytic hydrogen production: effects, cost, and development. Chem Catalysis
2022;2:1502-5. DOI
29. Shen S, Lindley SA, Chen X, Zhang JZ. Hematite heterostructures for photoelectrochemical water splitting: rational materials design
and charge carrier dynamics. Energy Environ Sci 2016;9:2744-75. DOI
30. Prasad U, Young JL, Johnson JC, et al. Enhancing interfacial charge transfer in a WO /BiVO photoanode heterojunction through
3
4
gallium and tungsten co-doping and a sulfur modified Bi O interfacial layer. J Mater Chem A 2021;9:16137-49. DOI
3
2
31. Sun D, Zhang X, Shi A, et al. Metal-free boron doped g-C3N5 catalyst: efficient doping regulatory strategy for photocatalytic water
splitting. Appl Surface Sci 2022;601:154186. DOI
32. Nyarige JS, Paradzah AT, Krüger TPJ, Diale M. Mono-Doped and Co-Doped nanostructured hematite for improved
photoelectrochemical water splitting. Nanomaterials 2022;12:366. DOI PubMed PMC
33. Meng L, Rao D, Tian W, Cao F, Yan X, Li L. Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn In
10 16
S nanosheet arrays toward improved photoelectrochemical performance. Angew Chem Int Ed Engl 2018;57:16882-7. DOI PubMed
34
34. Yang R, Zhu R, Fan Y, Hu L, Chen Q. In situ synthesis of C-doped BiVO with natural leaf as a template under different calcination
4
temperatures. RSC Adv 2019;9:14004-10. DOI PubMed PMC
35. Wen L, Li X, Zhang R, et al. Oxygen vacancy engineering of MOF-derived Zn-doped Co O nanopolyhedrons for enhanced
4
3
electrochemical nitrogen fixation. ACS Appl Mater Interfaces 2021;13:14181-8. DOI PubMed
36. Wang S, Wang X, Liu B, et al. Vacancy defect engineering of BiVO photoanodes for photoelectrochemical water splitting.
4
Nanoscale 2021;13:17989-8009. DOI PubMed
37. Pan JB, Wang BH, Wang JB, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO photoanode by NiFe-MOFs thin
4