Page 318 - Read Online
P. 318

Page 16 of 19                                Cervantes-Gracia et al. Vessel Plus 2020;4:27  I  http://dx.doi.org/10.20517/2574-1209.2020.22

               65.   Ward DB, Valentovic MA. Contrast induced acute kidney injury and direct cytotoxicity of iodinated radiocontrast media on renal
                   proximal tubule cells. J Pharmacol Exp Ther 2019;370:160-71.
               66.   Celik T, Yilmaz MI, Balta S, Ozturk C, Unal HU, et al. The relationship between plasma whole blood viscosity and cardiovascular events
                   in patients with chronic kidney disease. Clin Appl Thromb 2017;23:663-70.
               67.   Peters SAE, Woodward M, Rumley A, Tunstall-Pedoe HD, Lowe GDO. Plasma and blood viscosity in the prediction of cardiovascular
                   disease and mortality in the Scottish Heart Health Extended Cohort Study. Eur J Prev Cardiol 2017;24:161-7.
               68.   Sugimori H, Tomoda F, Koike T, Kurosaki H, Masutani T, et al. Increased blood viscosity is associated with reduced renal function and
                   elevated urinary albumin excretion in essential hypertensives without chronic kidney disease. Hypertens Res 2013;36:247-51.
               69.   Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res
                   2017;125:57-71.
               70.   Gavras I, Gavras H. Angiotensin II as a cardiovascular risk factor. J Hum Hypertens 2002;16 Suppl 2:S2-6.
               71.   Ibrahim NE, Shrestha S, McCarthy C, Lyass A, Li Y, et al. Endothelin-1 predicts incident heart failure, incident myocardial infarction,
                   cardiovascular mortality, and all-cause mortality in patients undergoing diagnostic coronary angiography: results from the catheter
                   sampled blood archive in cardiovascular disease (CASABLANCA) study. J Am Coll Cardiol 2018;71:A773.
               72.   Ozkok S, Ozkok A. Contrast-induced acute kidney injury: A review of practical points. World J Nephrol 2017;6:86-99.
               73.   Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, et al. Adenosine and the cardiovascular system. Am J Cardiovasc Drugs
                   2019;19:449-64.
               74.   Huang YT, Chen YY, Lai YH, Cheng CC, Lin TC, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent,
                   ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J
                   Mol Med 2016;37:83-91.
               75.   Jeong BY, Lee HY, Park CG, Kang J, Yu SL, et al. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced
                   acute kidney injury. PLoS One 2018;13:e0191034.
               76.   Chen Q, Zhang Y, Ding D, Xia M, Li D, et al. Estimated glomerular filtration rate and mortality among patients with coronary heart
                   disease. PLoS One 2016;11:e0161599.
               77.   Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol
                   2015;6:472-85.
               78.   Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13.
               79.   Plotnikov EY, Pevzner IB, Zorova LD, Chernikov, VP, Prusov AN, et al. Mitochondrial damage and mitochondria-targeted antioxidant
                   protection in LPS-induced acute kidney injury. Antioxidants 2019;8:176.
               80.   Tang C, Han H, Yan M, Zhu S, Liu J. et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-
                   reperfusion injury. Autophagy 2018;14:880-97.
               81.   Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria
                   based therapeutic strategies. Biochim Biophys Acta - Mol Basis Dis 2017;1863:1066-77.
               82.   Nicolson GL. Mitochondrial dysfunction and chronic disease: Treatment with natural supplements. Integr Med (Encinitas) 2014;13:35-43.
               83.   Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019;11:2090.
               84.   Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular
                   disease: a brief review. Ann Med 2018;50:121-7.
               85.   Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med
                   2019;51:1-13.
               86.   Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, et al. Mitochondria and cardiovascular diseases - from
                   pathophysiology to treatment. Ann Transl Med 2018;6:256.
               87.   Korge P, John SA, Calmettes G, Weiss JN. Reactive oxygen species production induced by pore opening in cardiac mitochondria: the role
                   of complex II. J Biol Chem 2017;292:9896-905.
               88.   Manskikh VN, Gancharova OS, Nikiforova AI, Krasilshchikova MS, Shabalina IG, et al. Age-associated murine cardiac lesions are
                   attenuated by the mitochondria-targeted antioxidant SkQ1. Histol Histopathol 2015;30:353-60.
               89.   Behringer EJ, Segal SS. Impact of aging on calcium signaling and membrane potential in endothelium of resistance arteries: a role for
                   mitochondria. J Gerontol A Biol Sci Med Sci 2017;72:1627-37.
               90.   Bigelman E, Cohen L, Aharon-Hananel G, Levy R, Rozenbaum Z, et al. Pathological presentation of cardiac mitochondria in a rat model
                   for chronic kidney disease. PLoS One 2018;13:e0198196.
               91.   Kocas C, Yildiz A, Abaci O, Karaca OS, Firdin N, et al. Platelet-to-lymphocyte ratio predicts contrast-induced nephropathy in patients
                   with non-ST-segment elevation acute coronary syndrome. Angiology 2015;66:964-8.
               92.   Yuan Y, Qiu H, Hu X, Luo T, Gao X, et al. Predictive value of inflammatory factors on contrast-induced acute kidney injury in patients
                   who underwent an emergency percutaneous coronary intervention. Clin Cardiol 2017;40:719-25.
               93.   Zhao K, Li Y, Gao Q. Role of red blood cell distribution width in predicting contrast induced nephropathy in patients with stable angina
                   pectoris undergoing percutaneous coronary intervention. Int J Cardiol 2015;197:276-8.
               94.   Zorlu C, Koseoglu C. Comparison of the relationship between inflammatory markers and contrast-induced nephropathy in patients with
                   acute coronary syndrome after coronary angiography. Angiology 2020;71:249-55.
               95.   Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal Syndrome. J Am Coll Cardiol 2008;52:1527-39.
               96.   Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and
                   hospitalization. N Engl J Med 2004;351:1296-305.
   313   314   315   316   317   318   319   320   321   322   323