Page 320 - Read Online
P. 320

Page 18 of 19                                Cervantes-Gracia et al. Vessel Plus 2020;4:27  I  http://dx.doi.org/10.20517/2574-1209.2020.22

                   apoptosis in rats exposed to carbon monoxide. Life Sci 2016;148:118-24.
               130.  Gibson KR, Neilson IL, Barrett F, Winterburn TJ, Sharma S, et al. Evaluation of the antioxidant properties of N-acetylcysteine in human
                   platelets: Prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity. J Cardiovasc Pharmacol 2009;54:319-26.
               131. Andreucci M, Faga T, Pisani A, Sabbatini M, Michael A. Acute kidney injury by radiographic contrast media: pathogenesis and
                   prevention. Biomed Res Int 2014;2014:362725.
               132.  Kwasa EA, Vinayak S, Armstrong R. The role of inflammation in contrast-induced nephropathy. Br J Radiol 2014;87:20130738.
               133.  Toso A, Leoncini M, Maioli M, Tropeano F, Di Vincenzo E, et al. Relationship between inflammation and benefits of early high-dose
                   rosuvastatin on contrast-induced nephropathy in patients with acute coronary syndrome: the pathophysiological link in the PRATO-ACS
                   study. JACC Cardiovasc Interv 2014;7:1421-9.
               134.  Kaya A, Kaya Y, Topçu S, Günaydın ZY, Kurt M, et al. Neutrophil-to-lymphocyte ratio predicts contrast-induced nephropathy in patients
                   undergoing primary percutaneous coronary intervention. Angiology 2014;65:51-6.
               135.  El Sayed AA, Haylor JL, El Nahas AM, Salzano S, Morcos SK. Haemodynamic effects of water-soluble contrast media on the isolated
                   perfused rat kidney. Br J Radiol 1991;64:435-9.
               136.  Limbruno U, Caterina R. Vasomotor effects of iodinated contrast media: just side effects? Curr Vasc Pharmacol 2003;1:321-8.
               137.  Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played
                   by modulators. Biomed Res Int 2013;2013:292953.
               138. Okoye O, Ojogwu L, Unuigbe E, Oviasu E. Frequency and risk factors of contrast-induced nephropathy after contrast procedures in a
                   Nigerian tertiary centre. West Afr J Med 2013;32:19-25.
               139.  Ambrose JA, Bhullar AS. Inflammation and thrombosis in coronary atherosclerosis: pathophysiologic mechanisms and clinical
                   correlations. Eur Med J 2019;4:71-8.
               140.  Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis
                   and the potential for targeted drug therapy. Cardiol Rev 2014;22:147-51.
               141.  Satilmis S, Karabulut A. Value of C-reactive protein/albumin ratio in predicting the development of contrast-induced nephropathy in
                   patients with non-ST elevation myocardial infarction. Angiology 2020;71:366-71.
               142.  Buyuklu M, Kandemir F, Ozkaraca M, Set T, Bakirci EM, et al. Benefical effects of lycopene against contrast medium-induced oxidative
                   stress, inflammation, autophagy, and apoptosis in rat kidney. Hum Exp Toxicol 2015;34:487-96.
               143.  Buyuklu M, Mehmet Kandemir F, Ozkaraca M, Set T, Murat Bakirci E, et al. Protective effect of curcumin against contrast induced
                   nephropathy in rat kidney: what is happening to oxidative stress, inflammation, autophagy and apoptosis? Eur Rev Med Pharmacol Sci
                   2014;18:461-70.
               144.  Greaves DR, Channon KM. Inflammation and immune responses in atherosclerosis. Trends Immunol 2002;23:535-41.
               145.  Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev
                   Cardiol 2017;14:133-44.
               146.  Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, et al. Inflammation following acute myocardial
                   infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018;186:73-87.
               147.  Rajendran K, Devarajan N, Ganesan M, Ragunathan M. Obesity, inflammation and acute myocardial infarction - expression of leptin,
                   IL-6 and high sensitivity-CRP in Chennai based population. Thromb J 2012;10:13.
               148.  Senguttuvan NB, Subramanian A, Agarwal G, Mishra S, Bahl VK. Association of Cytokines IL6, IL10, IL18, TNFα in acute coronary
                   syndrome. J Cardiol Vasc Med 2019;5:1-9.
               149.  Maekawa N, Wada H, Kanda T, Niwa T, Yamada Y, et al. Improved myocardial ischemia/reperfusion injury in mice lacking tumor
                   necrosis factor-α. J Am Coll Cardiol 2002;39:1229-35.
               150.  Riad A, Jäger S, Sobirey M, Escher F, Yaulema-Riss A, et al. Toll-like receptor-4 modulates survival by induction of left ventricular
                   remodeling after myocardial infarction in mice. J Immunol 2008;180:6954-61.
               151.  Satoh M, Shimoda Y, Maesawa C, Akatsu T, Ishikawa Y, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure
                   after acute myocardial infarction. Int J Cardiol 2006;109:226-34.
               152.  Shishido T, Nozaki N, Yamaguchi S, Shibata Y, Nitobe J, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial
                   infarction. Circulation 2003;108:2905-10.
               153.  Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, et al. CD14+CD16+ monocytes in coronary artery disease and their
                   relationship to serum TNF-α levels. Thromb Haemost 2004;92:419-24.
               154.  Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute
                   renal injury after cardiac surgery. Lancet 2005;365:1231-8.
               155.  Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal
                   function after percutaneous coronary interventions. Am J Nephrol 2006;26:287-92.
               156.  Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, et al. Neutrophil gelatinase-associated lipocalin
                   is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc
                   2009;41:158-61.
               157.  Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive
                   subclinical acute kidney injury. J Am Coll Cardiol 2011;57:1752-61.
               158.  Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute
                   kidney injury in critically ill children: a prospective cohort study. Crit Care 2007;11:R84.
               159.  Nakamura T, Sugaya T, Node K, Ueda Y, Koide H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced
   315   316   317   318   319   320   321   322   323   324   325