Page 319 - Read Online
P. 319

Cervantes-Gracia et al. Vessel Plus 2020;4:27  I  http://dx.doi.org/10.20517/2574-1209.2020.22                               Page 17 of 19

               97.   Schiffrin EL, Lipman ML, Mann JFE. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007;116:85-97.
               98.   Tokuyama H, Kelly DJ, Zhang Y, Gow RM, Gilbert RE. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and
                   heart following prolonged unilateral renal ischemia. Nephron Physiol 2007;106:54-62.
               99.   Halliwell B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging
                   2001;18:685-716.
               100.  Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction
                   associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018;100:1-19.
               101.  Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 2014;5:175.
               102. Cobley J, Noble A, Bessell R, Guille M, Husi H. Reversible thiol oxidation inhibits the mitochondrial ATP synthase in xenopus laevis
                   oocytes. Antioxidants 2020;9:215.
               103. Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, et al. Catalyst-free Click PEGylation reveals substantial
                   mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol 2019;26:101258.
               104. Plotnikov EY, Zorov DB. Pros and cons of use of mitochondria-targeted antioxidants. Antioxidants. 2019;8:316.
               105.  Liguori I, Russo G, Curcio F, Bulli G, Aran L, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018;13:757-72.
               106.  Abete P, Napoli C, Santoro G, Ferrara N, Tritto I, et al. Age-related decrease in cardiac tolerance to oxidative stress. J Mol Cell Cardiol
                   1999;31:227-36.
               107.  Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int 2005;68:14-22.
               108.  Caiazza A, Russo L, Sabbatini M, Russo D. Hemodynamic and tubular changes induced by contrast media. Biomed Res Int
                   2014;2014:578974.
               109.  Brinkley TE, Nicklas BJ, Kanaya AM, Satterfield S, Lakatta EG, et al. Plasma oxidized low-density lipoprotein levels and arterial
                   stiffness in older adults the health, aging, and body composition study. Hypertension 2009;53:846-52.
               110.  Zuliani G, Morieri ML, Volpato S, Vigna GB, Tch CB, et al. Determinants and clinical significance of plasma oxidized LDLs in older
                   individuals. A 9 years follow-up study. Atherosclerosis 2013;226:201-7.
               111.  Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical
                   Atherosclerotic Disease. Front Cardiovasc Med 2019;6:89.
               112.  Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep 2017;19:42.
               113.  Rivera J, Sobey CG, Walduck AK, Drummond GR. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout
                   mouse models. Redox Rep 2010;15:50-63.
               114.  Craige SM, Kant S, Reif M, Chen K, Pei Y, et al. Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. Free
                   Radic Biol Med 2015;89:1-7.
               115.  Liu XH, Zhang QY, Pan LL, Liu SY, Xu P, et al. NADPH oxidase 4 contributes to connective tissue growth factor expression through
                   Smad3-dependent signaling pathway. Free Radic Biol Med 2016;94:174-84.
               116.  Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent
                   inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 2016;36:295-307.
               117.  Wu RF, Ma Z, Liu Z, Terada LS. Nox4-derived H 2 O 2  mediates endoplasmic reticulum signaling through local ras activation. Mol Cell
                   Biol 2010;30:3553-68.
               118.  Martin D, Li Y, Yang J, Wang G, Margariti A, et al. Unspliced X-box-binding protein 1 (XBP1) protects endothelial cells from oxidative
                   stress through interaction with histone deacetylase 3. J Biol Chem 2014;289:30625-34.
               119.  Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res
                   Rev 2007;27:317-52.
               120.  Lemkens P, Nelissen J, Meens MJPMT, Janssen BJA, Schiffers PMH, et al. Dual neural peptidase/endothelin-converting enzyme
                   inhibition improves endothelial function in mesenteric resistance arteries of young spontaneously hypertensive rats. J Hypertens
                   2012;30:1799-808.
               121.  Barhoumi T, Briet M, Kasal DA, Fraulob-Aquino JC, Idris-Khodja N, et al. Erythropoietin-induced hypertension and vascular injury
                   in mice overexpressing human endothelin-1: exercise attenuated hypertension, oxidative stress, inflammation and immune response. J
                   Hypertens 2014;32:784-94.
               122.  Uchmanowicz I. Oxidative stress, frailty and cardiovascular diseases: current evidence. Adv Exp Med Biol 2020;1216:65-77.
               123.  McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, et al. Risk prediction of contrast-induced nephropathy. Am J Cardiol
                   2006;98:27K-36.
               124.  Liu ZZ, Schmerbach K, Lu Y, Perlewitz A, Nikitina T, et al. Iodinated contrast media cause direct tubular cell damage, leading to
                   oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am J Physiol Renal Physiol 2014;306:F864-72.
               125.  Pisani A, Riccio E, Andreucci M, Faga T, Ashour M, et al. Role of reactive oxygen species in pathogenesis of radiocontrast-induced
                   nephropathy. Biomed Res Int 2013;2013:868321.
               126.  Briguori C, Visconti G, Focaccio A, Airoldi F, Valgimigli M, et al. Renal insufficiency after contrast media administration trial II
                   (REMEDIAL II): renalguard system in high-risk patients for contrast-induced acute kidney injury. Circulation 2011;124:1260-9.
               127.  Goldenberg I, Matetzky S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ
                   2005;172:1461-71.
               128.  Briguori C, Donnarumma E, Quintavalle C, Fiore D, Condorelli G. Contrast-induced acute kidney injury: potential new strategies. Curr
                   Opin Nephrol Hypertens 2015;24:145-53.
               129.  Rezaee MA, Mohammadpour AH, Imenshahidi M, Mahmoudi M, Sankian M, et al. Protective effect of erythropoietin on myocardial
   314   315   316   317   318   319   320   321   322   323   324