Page 153 - Read Online
P. 153

Sun et al. Vessel Plus 2020;4:13  I  http://dx.doi.org/10.20517/2574-1209.2020.02                                                      Page 13 of 13

                   differences in body height. J Hypertens 2001;19:2197-203.
               36.  EI Baroudi A, Razafimahery F, Rakotomanana L. Fluid-structure interaction within three-dimensional models of an idealized arterial wall.
                   Int J Eng Sci 2014;84:113-26.
               37.  Zhao S, Li W, Gu L. Biomechanical prediction of abdominal aortic aneurysm rupture risk: sensitivity analysis. J Biomed Sci 2012;5:664-71.
               38.  Villard C, Eriksson P, Hanemaaijer R, Lindeman JH, Hultgren R. The composition of collagen in the aneurysm wall of men and women. J
                   Vasc Surg 2017;66:579-85.
               39.  Vande Geest JP, Dillavou ED, Di Martino ES, Oberdier M, Bohra A, et al. Gender-related differences in the tensile strength of abdominal
                   aortic aneurysm. Ann N Y Acad Sci 2006;1085:400-2.
               40.  Lindquist Liljeqvist M, Hultgren R, Siika A, Gasser TC, Roy J. Sex, smoking, body size, and aneurysm geometry influence the
                   biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. J Vasc Surg 2017;65:1014-21.e4.
               41.  Nestola MGC, Gizzi A, Cherubini C, Filippi S. Three-band decomposition analysis in multiscale FSI models of abdominal aortic
                   aneurysms. Int J Mod Phys C 2016;27:1650017.
               42.  Bianchi D, Monaldo E, Gizzi A, Marino M, Filippi S, et al. A FSI computational framework for vascular physiopathology: a novel flow-
                   tissue multiscale strategy. Med Eng Phys 2017;47:25-37.
               43.  Marino M. Constitutive modeling of soft tissues. In: Narayan R, editor. Encyclopedia of biomedical engineering. Elsevier: Oxford, UK;
                   2019. pp. 81-110.
   148   149   150   151   152   153   154   155   156   157   158