Page 93 - Read Online
P. 93

Qiu et al. Vessel Plus 2018;2:12  I  http://dx.doi.org/10.20517/2574-1209.2018.13                                                        Page 15 of 15

                   braided stents. J Biomate Sci 2003;14:255-66.
               26.  Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly (lactic acid). Adv Mater 2014;26:6905-11.
               27.  Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MW, Onuma Y, Garcia-Garcia HM, McGreevy R, Veldhof S.
                   A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a
                   prospective open-label trial. Lancet 2008;371:899-907.
               28.  Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J.
                   Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary
                   artery stenosis clinical perspective. Circulation 2010;122:2301-12.
               29.  Serruys PW, Ormiston J, van Geuns RJ, de Bruyne B, Dudek D, Christiansen E, Chevalier B, Smits P, McClean D, Koolen J, Windecker
                   S. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis. J Ame Col Cardio 2016;67:766-76.
               30.  Lane JP, Perkins LE, Sheehy AJ, Pacheco EJ, Frie MP, Lambert BJ, Rapoza RJ, Virmani R. Lumen gain and restoration of pulsatility
                   after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. Cardiovas Interven 2014;7:688-95.
               31.  Chua SD, Mac Donald BJ, Hashmi MSJ. Finite element simulation of stent and balloon interaction. J Mater Pro Tech 2003;143:591-7.
               32.  Lally C, Dolan F, Prendergast PJ. Cardiovascular stent design and vessel stresses: a nite element analysis. J Biomech 2005;38:1574-81.
               33.  Schiavone A, Zhao LG, Abdel-Wahab AA. Effects of material, coating, design and plaque composition on stent deployment inside a
                   stenotic artery -- nite element simulation. Mater Sci Eng C Mater Biol Appl 2014;42:479-88.
               34.  Pauck RG, Reddy BD. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med Eng Phys
                   2015;37:7-12.
               35.  Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M. A finite element strategy to investigate the free expansion behaviour of
                   a biodegradable polymeric stent. J Biomech 2015;48:2012-8.
               36.  Wang Q, Fang G, Zhao Y, Wang G, Cai T. Computational and experimental investigation into mechanical performances of poly-L-
                   lactide acid (PLLA) coronary stents. J Mech Behav Biomed Mater 2017;65:415-27.
               37.  Shanahan C, Tofail SA, Tiernan P. Viscoelastic braided stent: finite element modelling and validation of crimping behaviour. Mater
                   Design 2017;121:143-53.
               38.  Schiavone A, Abunassar C, Hossainy S, Zhao LG. Computational analysis of mechanical stress-strain interaction of a bioresorbable
                   scaffold with blood vessel. J Biomech 2016;49:2677-83.
               39.  Soares JS, Moore JE, Rajagopal KR. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. J Med
                   Devices 2010;4:410-7.
               40.  Luo Q, Liu X, Li Z, Huang C, Zhang W, Meng J, Chang Z, Hua Z. Degradation model of bioabsorbable cardiovascular stents. PLoS
                   One 2014;9:e110278.
               41.  Qiu T, He R, Abunassar C, Hossainy S, Zhao LG. Effect of two-year degradation on mechanical interaction between a bioresorbable
                   scaffold and blood vessel. J Mech Behav Biomed Mater 2017;78:254.
               42.  Farooq V, Gogas BD, Serruys PW. Restenosis delineating the numerous causes of drug-eluting stent restenosis. Circ Cardiovasc Interv
                   2010;4:195-205.
               43.  Imani SM, Goudarzi AM, Ghasemi SE, Kalani A, Mahdinejad J. Analysis of the stent expansion in a stenosed artery using finite element
                   method: application to stent versus stent study. Proc Inst Mech Eng H 2014;228:996-1004.
               44.  Soares JS, Moore JE Jr, Rajagopal KR. Constitutive framework for biodegradable polymers with applications to biodegradable stents.
                   Asaio 2008;54:295-301.
               45.  Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro
                   degradation. J Mechan Behar Biomed Mater 2011;4:451-60.
               46.  Grabow N, Bünger CM, Schultze C, Schmohl K, Martin DP, Williams SF, Sternberg K, Schmitz KP. A biodegradable slotted tube stent
                   based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 2007;35:2031-8.
               47.  Grabow N, Schlun M, Sternberg K, Hakansson N, Kramer S, Schmitz KP. Mechanical properties of laser cut poly(L-lactide) micro-
                   specimens: implications for stent design, manufacture, and sterilization. ASME J Biomechan Eng 2008;127:25-31.
               48.  Moore JE Jr, Soares JS, Rajagopal KR. Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovas Eng
                   Tech 2015;1:52-65.
               49.  Wu W. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomateralia
                   2013;9:8730-9.
               50.  Qiu TY, Song M, Zhao LG. A computational study of crimping and expansion of bioresorbable polymeric stents. Mech Time-Depen
                   Mater 2017;6:1-18.
   88   89   90   91   92   93   94   95   96   97   98