Page 92 - Read Online
P. 92

Page 14 of 15                                                         Qiu et al. Vessel Plus 2018;2:12  I  http://dx.doi.org/10.20517/2574-1209.2018.13

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2018.



               REFERENCES
               1.   Moore JE Jr, Soares JS, Rajagopal KR. Biodegradable stents: biomechanical modelling challenges and opportunities. Cardiovasc Eng
                   Technol 2010;1:52-65.
               2.   Hoffmann R, Mintz GS. Coronary in-stent restenosis - predictors, treatment and prevention. Eur Heart J 2000;21:1739-49.
               3.   Pfisterer ME. Late stent thrombosis after drug-eluting stent implantation for acute myocardial infarction: a new red flag is raised.
                   Circulation 2008;118:1117-9.
               4.   Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G. Incidence, predictors, and outcome of thrombosis after
                   successful implantation of drug-eluting stents. J Am Med Assoc 2005;293:2126-30.
               5.   Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting
                   stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006;48:193-202.
               6.   Yang TH, Kim DI, Park SG, Seo JS, Cho HJ, Seol SH, Kim SM, Kim DK, Kim DS. Clinical characteristics of stent fracture after
                   sirolimus- eluting stent implantation. Int J Cardiol 2009;131:212-6.
               7.   Flege C, Vogt F, Höges S, Jauer L, Borinski M, Schulte VA, Hoffmann R, Poprawe R, Meiners W, Jobmann M, Wissenbach K, Blindt R.
                   Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. J Mater Sci Mater
                   Med 2013;24:241-55.
               8.   Ormiston JA, Serruys PW. Bioabsorbable coronary stents. Circ Cardiovasc Interv 2009;2:255-60.
               9.   Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization?
                   Circulation 2011;123:779-97.
               10.  Waksman R. Biodegradable stents: they do their job and disappear. J Invasive Cardiol 2006;18:70-4.
               11.  Grabow N, Bünger CM, Schultze C, Schmohl K, Martin DP, Williams SF, Sternberg K, Schmitz KP. A biodegradable slotted tube stent
                   based on poly (L-lactide) and poly (4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 2007;35:2031-8.
               12.  Grabow N, Bünger CM, Sternberg K, Mews S, Schmohl K, Schmitz KP. Mechanical properties of a biodegradable balloon-expandable
                   stent from poly (L-lactide) for peripheral vascular applications. J Med Devices 2007;1:84-8.
               13.  Schmidt W, Behrens P, Brandt-Wunderlich C, Siewert S, Grabow N, Schmitz KP. In vitro performance investigation of bioresorbable
                   scaffolds-standard tests for vascular stents and beyond. Cardiovasc Revasc Med 2016;17:375-83.
               14.  Ormiston JA, Webber B, Ubod B, Darremont O, Webster MW. An independent bench comparison of two bioresorbable drug-eluting
                   coronary scaffolds (Absorb and DESolve) with a durable metallic drug-eluting stent (ML8/Xpedition). EuroIntervention 2015;11:60-7.
               15.  Welch TR, Eberhart RC, Reisch J, Chuong CJ. Influence of thermal annealing on the mechanical properties of PLLA coiled stents.
                   Cardiovasc Eng Technol 2014;5:270-80.
               16.  Xu X, Liu T, Zhang K, Liu S, Shen Z, Li Y, Jing X. Biodegradation of poly (l-lactide-co-glycolide) tube stents in bile. Polym Degrad
                   Stab 2008;93:811-7.
               17.  Hadaschik BA, Paterson RF, Fazli L, Clinkscales KW, Shalaby SW, Chew BH. Investigation of a novel degradable ureteral stent in a
                   porcine model. J Urol 2008;180:1161-6.
               18.  Yang G, Xie H, Huang Y, Lv Y, Zhang M, Shang Y, Zhou J, Wang L, Wang JY, Chen F. Immersed multilayer biodegradable ureteral
                   stent with reformed biodegradation: an in vitro experiment. J Biomater Polym 2017;31:1235-44.
               19.  Gong Y, Zhou Q, Gao C, Shen J. In vitro and in vivo degradability and cytocompatibility of poly (l-lactic acid) scaffold fabricated by a
                   gelatin particle leaching method. Acta Biomaterials 2007;3:531-40.
               20.  Liu YS, Huang QL, Kienzle A, Müller WEG, Feng QL. In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater
                   Sci Eng C 2014;38:227-34.
               21.  Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K. Manufacture and characterisation of porous PLA scaffolds. Procedia
                   CIRP 2016;49:33-8.
               22.  Zamiri P, Kuang Y, Sharma U, Ng TF, Busold RH, Rago AP, Core LA, Palasis M. The biocompatibility of rapidly degrading polymeric
                   stents in porcine carotid arteries. Biomaterials 2010;31:7847-55.
               23.  Agrawal CM, Haas KF, Leopold DA, Clark HG. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents.
                   Biomaterials 1992;13:176-82.
               24.  Zilberman M, Nelson KD, Eberhart RC. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-
                   based stents. J Biomed Mater Res B 2005;74:792-9.
               25.  Nuutinen JP, Clerc C, Reinikainen R, Törmälä P. Mechanical properties and in vitro degradation of bioabsorbable self-expanding
   87   88   89   90   91   92   93   94   95   96   97